cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182691 Composite Beatty sequence of sqrt(2).

Original entry on oeis.org

3, 4, 13, 18, 61, 86, 293, 414, 1413, 1998, 6821, 9646, 32933, 46574, 159013, 224878, 767781, 1085806, 3707173, 5242734, 17899813, 25314158, 86427941, 122227566, 417311013, 590166894, 2014955813, 2849577838, 9729067301
Offset: 1

Views

Author

Clark Kimberling, Nov 27 2010

Keywords

Comments

The bisection (4,18,86,...) is a subsequence of A001951.
The bisection (3,13,61,...) is a subsequence of A001952.
See the comment at A107857 regarding Beatty sequences.

Examples

			a(1)=floor(2+sqrt(2))=3, a(2)=floor(r*a(1))=4.
		

Crossrefs

Programs

  • Maple
    Digits := 16 ;
    A182691 := proc(n) option remember; local r,s ; r := sqrt(2) ; s := 2+r ; if n = 1 then floor(s) ; elif type(n,'odd') then floor(s*procname(n-1)) ; else floor(r*procname(n-1)) ; end if; end proc:
    seq(A182691(n),n=1..30) ;
  • Mathematica
    a[1]:= 3; a[n_]:= If[OddQ[n], Floor[(2+Sqrt[2])*a[n-1]], Floor[Sqrt[2]*a[n-1]]]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Sep 29 2018 *)

Formula

a(n) = floor(s*a(n-1)) if n odd, a(n)=floor(r*a(n-1)) if n even, where r=sqrt(2), s=2+r, a(1)=floor(s).