A182709 Sum of the emergent parts of the partitions of n.
0, 0, 0, 2, 3, 11, 14, 33, 45, 81, 109, 185, 237, 372, 490, 715, 928, 1326, 1693, 2348, 2998, 4032, 5119, 6795, 8530, 11132, 13952, 17927, 22314, 28417, 35126, 44279, 54532, 68062, 83422, 103427, 126063, 155207, 188506, 230547, 278788, 339223, 408482
Offset: 1
Examples
For n=7 the partitions of 7 that do not contain "1" as a part are 7 4 + 3 5 + 2 3 + 2 + 2 Then remove one copy of the smallest part of every partition. The rest are the emergent parts: ., 4, . 5, . 3, 2, . The sum of these parts is 4 + 5 + 3 + 2 = 14, so a(7)=14. For n=10 the illustration in the link shows the location of the emergent parts (colored yellow and green) and the location of the filler parts (colored blue) in the last section of the set of partitions of 10.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Jason Kimberley)
- Omar E. Pol, Illustration: How to build the last section of the set of partitions (copy, paste and fill)
- Omar E. Pol, Illustration of the shell model of partitions (2D view)
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; if n<0 then 0 elif n=0 then 1 elif i<2 then 0 else b(n, i-1) +b(n-i, i) fi end: c:= proc(n, i, k) option remember; if n<0 then 0 elif n=0 then k elif i<2 then 0 else c(n, i-1, k) +c(n-i, i, i) fi end: a:= n-> n*b(n, n) - c(n, n, 0): seq(a(n), n=1..40); # Alois P. Heinz, Dec 01 2010
-
Mathematica
f[n_]:=Total[Flatten[Most/@Select[IntegerPartitions[n],!MemberQ[#,1]&]]]; Table[f[i],{i,50}] (* Harvey P. Dale, Dec 28 2010 *) b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i<2, 0, True, b[n, i-1] + b[n - i, i]]; c[n_, i_, k_] := c[n, i, k] = Which[n<0, 0, n==0, k, i<2, 0, True, c[n, i-1, k] + c[n-i, i, i]]; a[n_] := n*b[n, n] - c[n, n, 0]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Oct 08 2015, after Alois P. Heinz *)
Formula
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (12*sqrt(2*n)) * (1 - (3*sqrt(3/2)/Pi + 13*Pi/(24*sqrt(6)))/sqrt(n)). - Vaclav Kotesovec, Jan 03 2019, extended Jul 05 2019
Extensions
More terms from Alois P. Heinz, Dec 01 2010
Comments