cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182712 Number of 2's in the last section of the set of partitions of n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 3, 8, 7, 15, 15, 27, 29, 48, 53, 82, 94, 137, 160, 225, 265, 362, 430, 572, 683, 892, 1066, 1370, 1640, 2078, 2487, 3117, 3725, 4624, 5519, 6791, 8092, 9885, 11752, 14263, 16922, 20416, 24167, 29007, 34254, 40921, 48213, 57345, 67409
Offset: 0

Views

Author

Omar E. Pol, Nov 28 2010

Keywords

Comments

Essentially the same as A087787 but here a(n) is the number of 2's in the last section of n, not n-2. See also A100818.
Note that a(1)..a(11) coincide with a(2)..a(12) of A005291.
Also number of 2's in all partitions of n that do not contain 1's as a part, if n >= 1. Also 0 together with the first differences of A024786. - Omar E. Pol, Nov 13 2011
Also number of 2's in the n-th section of the set of partitions of any integer >= n. For the definition of "section" see A135010. - Omar E. Pol, Dec 01 2013

Examples

			a(6) = 4 counts the 2's in 6 = 4+2 = 2+2+2. The 2's in 6 = 3+2+1 = 2+2+1+1 = 2+1+1+1+1 do not count. - _Omar E. Pol_, Nov 13 2011
From _Omar E. Pol_, Oct 27 2012: (Start)
----------------------------------
Last section               Number
of the set of                of
partitions of 6             2's
----------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 1
2 + 2 + 2 .................. 3
.   1 ...................... 0
.       1 .................. 0
.       1 .................. 0
.           1 .............. 0
.           1 .............. 0
.               1 .......... 0
.                   1 ...... 0
---------------------------------
.   8 - 4 =                  4
.
In the last section of the set of partitions of 6 the difference between the sum of the second column and the sum of the third column is 8 - 4 = 4, the same as the number of 2's, so a(6) = 4 (see also A024786).
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], 2], {n, 0, 49}] (* Robert Price, May 15 2020 *)
  • Sage
    A182712 = lambda n: sum(list(p).count(2) for p in Partitions(n) if 1 not in p) # Omar E. Pol, Nov 13 2011

Formula

It appears that A000041(n) = a(n+1) + a(n+2), n >= 0. - Omar E. Pol, Feb 04 2012
G.f.: (x^2/(1 + x))*Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Jun 02 2018