A182714 Number of 4's in the last section of the set of partitions of n.
0, 0, 0, 1, 0, 1, 1, 3, 2, 5, 5, 10, 10, 17, 19, 31, 34, 51, 60, 86, 100, 139, 165, 223, 265, 349, 418, 543, 648, 827, 992, 1251, 1495, 1866, 2230, 2758, 3289, 4033, 4803, 5852, 6949, 8411, 9973, 12005, 14194, 17002, 20060, 23919, 28153, 33426, 39256, 46438
Offset: 1
Keywords
Examples
a(8) = 3 counts the 4's in 8 = 4+4 = 4+2+2. The 4's in 8 = 4+3+1 = 4+2+1+1 = 4+1+1+1+1 do not count. From _Omar E. Pol_, Oct 25 2012: (Start) -------------------------------------- Last section Number of the set of of partitions of 8 4's -------------------------------------- 8 .............................. 0 4 + 4 .......................... 2 5 + 3 .......................... 0 6 + 2 .......................... 0 3 + 3 + 2 ...................... 0 4 + 2 + 2 ...................... 1 2 + 2 + 2 + 2 .................. 0 . 1 .......................... 0 . 1 ...................... 0 . 1 ...................... 0 . 1 .................. 0 . 1 ...................... 0 . 1 .................. 0 . 1 .................. 0 . 1 .............. 0 . 1 .................. 0 . 1 .............. 0 . 1 .............. 0 . 1 .......... 0 . 1 .......... 0 . 1 ...... 0 . 1 .. 0 ------------------------------------ . 6 - 3 = 3 . In the last section of the set of partitions of 8 the difference between the sum of the fourth column and the sum of the fifth column is 6 - 3 = 3 equaling the number of 4's, so a(8) = 3 (see also A024788). (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local g, h; if n=0 then [1, 0] elif i<2 then [0, 0] else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i)); [g[1]+h[1], g[2]+h[2]+`if`(i=4, h[1], 0)] fi end: a:= n-> b(n, n)[2]: seq (a(n), n=1..70); # Alois P. Heinz, Mar 19 2012
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 1] < Count[p, 3]], {n, 0, z}] (* Clark Kimberling, Apr 01 2014 *) b[n_, i_] := b[n, i] = Module[{g, h}, If[n==0, {1, 0}, If[i<2, {0, 0}, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[i==4, h[[1]], 0]}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *) Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], 4], {n, 52}] (* Robert Price, May 15 2020 *)
-
Sage
A182714 = lambda n: sum(list(p).count(4) for p in Partitions(n) if 1 not in p)
Formula
It appears that A000041(n) = a(n+1) + a(n+2) + a(n+3) + a(n+4), n >= 0. - Omar E. Pol, Feb 04 2012
Comments