cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182717 Number of 2's in all partitions of 2n+1 that do not contain 1 as a part.

Original entry on oeis.org

0, 0, 1, 3, 7, 15, 29, 53, 94, 160, 265, 430, 683, 1066, 1640, 2487, 3725, 5519, 8092, 11752, 16922, 24167, 34254, 48213, 67409, 93661, 129378, 177720, 242841, 330172, 446772, 601810, 807153, 1078081, 1434250, 1900860, 2510097, 3303003, 4331767, 5662539
Offset: 0

Views

Author

Omar E. Pol, Dec 03 2010

Keywords

Crossrefs

A182743. Bisection of A182712.

Programs

  • Maple
    b:= proc(n,i) option remember; local r;
          if n<=0 or i<2 then 0
        elif i=2 then `if`(irem(n,2,'r')=0,r,0)
        else b(n,i-1) +b(n-i,i)
          fi
        end:
    a:= n-> b(2*n+1, 2*n+1):
    seq(a(n), n=0..45);  # Alois P. Heinz, Dec 03 2010
  • Mathematica
    b[n_, i_] := b[n, i] = If[n <= 0 || i < 2, 0, If[i == 2, If[Mod[n, 2] == 0, Quotient[n, 2], 0], b[n, i-1] + b[n-i, i]]];
    a[n_] := b[2n+1, 2n+1];
    a /@ Range[0, 45] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)
    Table[Count[Flatten[Select[IntegerPartitions[2 n+1],FreeQ[#,1]&]],2],{n,0,40}] (* Harvey P. Dale, Jan 28 2022 *)

Extensions

More terms from Alois P. Heinz, Dec 03 2010