A182755 Expansion of (1+35*x)/(1-90*x^2).
1, 35, 90, 3150, 8100, 283500, 729000, 25515000, 65610000, 2296350000, 5904900000, 206671500000, 531441000000, 18600435000000, 47829690000000, 1674039150000000, 4304672100000000, 150663523500000000, 387420489000000000, 13559717115000000000, 34867844010000000000
Offset: 1
Examples
For n = 4; a(2) = 35, a(3) = 90, a(4) = 3150 before [(35+90)*(35+3150)*(90+3150)] / (35*90*3150) = 130.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,90).
Programs
-
Magma
I:=[1,35]; [n le 2 select I[n] else 90*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 11 2018
-
Mathematica
LinearRecurrence[{0,90}, {1,35}, 50] (* or *) CoefficientList[Series[(1 + 35*x)/(1-90*x^2), {x,0,50}], x] (* G. C. Greubel, Jan 11 2018 *)
-
PARI
Vec((1+35*x)/(1-90*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
Formula
a(2n) = 35* a(2n-1), a(2n+1) = (18/7) * a(2n).
a(2n) = 35*90^(n-1), a(2n+1) = 90^n.
Extensions
Terms a(12) onward added by G. C. Greubel, Jan 11 2018
Comments