A182803 Number of 8-core partitions of n.
1, 1, 2, 3, 5, 7, 11, 15, 14, 22, 26, 32, 37, 45, 47, 56, 75, 77, 89, 102, 111, 124, 142, 147, 167, 182, 196, 210, 242, 249, 288, 322, 299, 349, 382, 393, 423, 467, 453, 499, 570, 563, 602, 669, 649, 716, 772, 754, 843, 907, 884
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
8th column of A175595.
Programs
-
Maple
with(numtheory): A:= proc(n, t) option remember; local d, j; `if`(n=0, 1, add(add(`if`(t=0 or irem(d, t)=0, d-d*t, d), d=divisors(j)) *A(n-j, t), j=1..n)/n) end: seq(A(n,8), n=0..50);
-
Mathematica
A[n_, t_] := A[n, t] = If[n == 0, 1, Sum[Sum[If[t == 0 || Mod[d, t] == 0, d - d*t, d], {d, Divisors[j]}]*A[n - j, t], {j, 1, n}]/n]; Table[A[n, 8], {n, 0, 50}] (* Jean-François Alcover, May 21 2018, translated form Maple *)
Formula
G.f.: Product_{i>=1} (1-x^(8*i))^8/(1-x^i).
Euler transform of period 8 sequence [1,1,1,1,1,1,1,-7, .. ].