cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182803 Number of 8-core partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 14, 22, 26, 32, 37, 45, 47, 56, 75, 77, 89, 102, 111, 124, 142, 147, 167, 182, 196, 210, 242, 249, 288, 322, 299, 349, 382, 393, 423, 467, 453, 499, 570, 563, 602, 669, 649, 716, 772, 754, 843, 907, 884
Offset: 0

Views

Author

Alois P. Heinz, Dec 03 2010

Keywords

Crossrefs

8th column of A175595.

Programs

  • Maple
    with(numtheory): A:= proc(n, t) option remember; local d, j; `if`(n=0, 1, add(add(`if`(t=0 or irem(d, t)=0, d-d*t, d), d=divisors(j)) *A(n-j, t), j=1..n)/n) end: seq(A(n,8), n=0..50);
  • Mathematica
    A[n_, t_] := A[n, t] = If[n == 0, 1, Sum[Sum[If[t == 0 || Mod[d, t] == 0, d - d*t, d], {d, Divisors[j]}]*A[n - j, t], {j, 1, n}]/n];
    Table[A[n, 8], {n, 0, 50}] (* Jean-François Alcover, May 21 2018, translated form Maple *)

Formula

G.f.: Product_{i>=1} (1-x^(8*i))^8/(1-x^i).
Euler transform of period 8 sequence [1,1,1,1,1,1,1,-7, .. ].