cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182820 G.f.: exp( Sum_{n>=1} sigma(4n)*x^n/n ).

Original entry on oeis.org

1, 7, 32, 119, 385, 1127, 3057, 7799, 18914, 43950, 98434, 213486, 450051, 925013, 1858355, 3657052, 7062245, 13404195, 25038741, 46086250, 83669927, 149970936, 265608168, 465149039, 806022315, 1382822644, 2350101516, 3958427938
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2010

Keywords

Comments

sigma(4n) = A000203(4n), the sum of divisors of 4n.
Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).

Examples

			G.f.: A(x) = 1 + 7*x + 32*x^2 + 119*x^3 + 385*x^4 + 1127*x^5 +...
log(A(x)) = 7*x + 15*x^2/2 + 28*x^3/3 + 31*x^4/4 + 42*x^5/5 + 60*x^6/6 + 56*x^7/7 + 63*x^8/8 +...+ sigma(4n)*x^n/n +...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b := n -> add((-1)^k*numbpart(k)*numbpart(n-k), k = 0..n):
    seq( add(I^k*b(k)*b(4*n-k), k = 0..4*n), n = 0..30 );
    # - Peter Bala, Jan 24 2017
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^k)^3/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(4*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    x='x+O('x^66); Vec(eta(x^2)^3/eta(x)^7) \\ Joerg Arndt, Dec 05 2010

Formula

Generating function A(x) = E(x^2)^3/E(x)^7 where E(x) = Product_{n>=1} (1-x^n). [Joerg Arndt, Dec 05 2010]
a(n) ~ 11^(5/4) * exp(sqrt(11*n/3)*Pi) / (128 * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Nov 28 2016
From Peter Bala, Jan 24 2016: (Start)
A(x^4) = P(x)*P(-x)*P(i*x)*P(-i*x), where P(x) = 1/Product_{n>=1} (1 - x^n) is the g.f. for the partition function p(n) = A000041(n).
a(n) = Sum_{k = 0..4*n} i^k*b(k)*b(4*n-k), where b(n) := Sum_{k = 0..n} (-1)^k*p(k)*p(n-k). (End)