A182856 a(0) = 1; for n > 0, a(n) = smallest positive integer whose prime signature contains, for k = 1 to n, exactly one positive number appearing exactly k times.
1, 2, 60, 1801800, 11657093261814000, 7167827541370578634694420017740000, 291943326350524088652207164949980988754136887856059678357800000
Offset: 0
Examples
The canonical prime factorization of a(3) = 1801800 is 2^3*3^2*5^2*7*11*13. The prime signature of 1801800 is therefore (3,2,2,1,1,1). Note that (3,2,2,1,1,1) contains exactly one number that appears once (3), one number that appears twice (2), and one number that appears three times (1).
Links
- David A. Corneth, Table of n, a(n) for n = 0..12
- Dario Alpern, Factorization using the Elliptic Curve Method
Crossrefs
Programs
-
Mathematica
Table[Product[Times@@Prime[i*(i-1)/2+Ceiling[Range[i*(n-i)]/(n-i)]],{i,n-1}],{n,6}] (* Gus Wiseman, Jan 03 2019 *)
-
PARI
a(n) = if(n == 0, return(1)); my(f = matrix(binomial(n+1,2), 2)); f[, 1] = primes(#f~ )~; f[, 2] = Vecrev(concat(vector(n, i, vector(n+1-i, j, i))))~; factorback(f) \\ David A. Corneth, Jan 03 2019
Formula
Partial products of A113511.
log a(n) ~ (1/3) n^3 log n. [Charles R Greathouse IV, Jan 13 2012]
a(0) = 1; a(n + 1) = A002110(binomial(n + 2, 2)) * a(n). - David A. Corneth, Jan 03 2019
Comments