A182866 Number of edges in the n^2 X n^2 Sudoku graph.
0, 56, 810, 4992, 20000, 61560, 158466, 358400, 734832, 1395000, 2488970, 4219776, 6854640, 10737272, 16301250, 24084480, 34744736, 49076280, 68027562, 92720000, 124467840, 164799096, 215477570, 278525952, 356250000, 451263800, 566516106, 705317760
Offset: 1
Examples
For the standard Sudoku (n=3) there are 81 vertices. Each vertex is connected to 8 others within its own square, and 12 others in its row and column. Dividing by 2 gives 810 edges.
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
Table[n^4/2 (-1-2n+3n^2),{n,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,56,810,4992,20000,61560,158466},30] (* Harvey P. Dale, Oct 30 2011 *)
-
PARI
Vec(2*x^2*(28+209*x+249*x^2+53*x^3+x^4)/(1-x)^7+O(x^99)) \\ Charles R Greathouse IV, Jan 25 2012
Formula
a(n) = (1/2)*n^4*(-1 - 2*n + 3*n^2).
a(1)=0, a(2)=56, a(3)=810, a(4)=4992, a(5)=20000, a(6)=61560, a(7)=158466, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Oct 30 2011
G.f.: 2*x^2*(28 + 209*x + 249*x^2 + 53*x^3 + x^4)/(1-x)^7. - Colin Barker, Jan 25 2012