A159299 Number of n-colorings of the 4 X 4 Sudoku graph.
0, 0, 0, 0, 288, 166560, 33539040, 2350746720, 75756999360, 1388552614848, 16744788486720, 146769785743680, 1002373493948640, 5606534724167520, 26640793339768608, 110556058012152480, 409297168707073920, 1374572399886053760, 4243833928227876480
Offset: 0
Examples
For n=4 colors one of the 288 possible colorings is given by this Sudoku: +---+---+ |1 2|3 4| |4 3|2 1| +---+---+ |3 1|4 2| |2 4|1 3| +---+---+ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Wikipedia, Mathematics of Sudoku
- Wikipedia, Sudoku
- Wikipedia, Sudoku algorithms
- Index entries for linear recurrences with constant coefficients, signature (17,-136,680, -2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380, -680,136,-17,1).
Programs
-
Maple
a:= n-> n^16 -56*n^15 +1492*n^14 -25072*n^13 +296918*n^12 -2621552*n^11 +17795572*n^10 -94352168*n^9 +392779169*n^8 -1279118840*n^7 +3217758336*n^6 -6107865464*n^5 +8413745644*n^4 -7877463064*n^3 +4436831332*n^2 -1117762248*n: seq(a(n), n=0..20);
Formula
a(n) = n^16 -56*n^15 + ... (see Maple program).
G.f.: -96*x^4*(343316843*x^12 +4128584684*x^11 +20203233398*x^10 +50370257700*x^9 +68017469565*x^8 +50271571704*x^7 +20027437332*x^6 +4145554824*x^5 +419198325*x^4 +18781660*x^3 +320278*x^2 +1684*x +3)/ (x-1)^17. - Colin Barker, Aug 04 2012
Comments