cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182935 Numerators of an asymptotic series for the factorial function (Stirling's formula with half-shift).

Original entry on oeis.org

1, -1, 1, 1003, -4027, -5128423, 168359651, 68168266699, -587283555451, -221322134443186643, 3253248645450176257, 52946591945344238676937, -3276995262387193162157789, -6120218676760621380031990351
Offset: 0

Views

Author

Peter Luschny, Feb 24 2011

Keywords

Comments

G_n = A182935(n)/A144618(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function.
The relationship between these coefficients and the Bernoulli numbers are due to De Moivre, 1730 (see Laurie).

Examples

			G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720.
		

Crossrefs

Programs

  • Maple
    G := proc(n) option remember; local j,R;
    R := seq(2*j,j=1..iquo(n+1,2));
    `if`(n=0,1,add(bernoulli(j,1/2)*G(n-j+1)/(n*j),j=R)) end:
    A182935 := n -> numer(G(n)); seq(A182935(i),i=0..15);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Numerator, {n, 0, 15}] (* Jean-François Alcover, Jul 26 2013, after Maple *)

Formula

z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2) Sum_{n>=0} G_n / (z+1/2)^n.