A182935 Numerators of an asymptotic series for the factorial function (Stirling's formula with half-shift).
1, -1, 1, 1003, -4027, -5128423, 168359651, 68168266699, -587283555451, -221322134443186643, 3253248645450176257, 52946591945344238676937, -3276995262387193162157789, -6120218676760621380031990351
Offset: 0
Examples
G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720.
Links
- Dirk Laurie, Old and new ways of computing the gamma function, page 14, 2005.
- Peter Luschny, Approximation Formulas for the Factorial Function.
- W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016).
Programs
-
Maple
G := proc(n) option remember; local j,R; R := seq(2*j,j=1..iquo(n+1,2)); `if`(n=0,1,add(bernoulli(j,1/2)*G(n-j+1)/(n*j),j=R)) end: A182935 := n -> numer(G(n)); seq(A182935(i),i=0..15);
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Numerator, {n, 0, 15}] (* Jean-François Alcover, Jul 26 2013, after Maple *)
Formula
z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2) Sum_{n>=0} G_n / (z+1/2)^n.
Comments