cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144618 Denominators of an asymptotic series for the factorial function (Stirling's formula with half-shift).

Original entry on oeis.org

1, 24, 1152, 414720, 39813120, 6688604160, 4815794995200, 115579079884800, 22191183337881600, 263631258054033408000, 88580102706155225088000, 27636992044320430227456000, 39797268543821419527536640000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2009, based on email from Chris Kormanyos (ckormanyos(AT)yahoo.com)

Keywords

Comments

From Peter Luschny, Feb 24 2011 (Start):
G_n = A182935(n)/A144618(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function.
The relationship between these coefficients and the Bernoulli numbers are due to De Moivre, 1730 (see Laurie). (End)
Also denominators of polynomials mentioned in A144617.
Also denominators of polynomials mentioned in A144622.

Examples

			G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720.
		

Crossrefs

Programs

  • Maple
    G := proc(n) option remember; local j,R;
    R := seq(2*j,j=1..iquo(n+1,2));
    `if`(n=0,1,add(bernoulli(j,1/2)*G(n-j+1)/(n*j),j=R)) end:
    A144618 := n -> denom(G(n)); seq(A144618(i),i=0..12);
    # Peter Luschny, Feb 24 2011
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Denominator, {n, 0, 12}] (* Jean-François Alcover, Jul 26 2013, after Maple *)

Formula

z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2) Sum_{n>=0} G_n / (z+1/2)^n.
- Peter Luschny, Feb 24 2011

Extensions

Added more terms up to polynomial number u_12, v_12 for the denominators of u_k, v_k. Christopher Kormanyos (ckormanyos(AT)yahoo.com), Jan 31 2009
Typo in definition corrected Aug 05 2010 by N. J. A. Sloane
A-number in definition corrected - R. J. Mathar, Aug 05 2010
Edited and new definition by Peter Luschny, Feb 24 2011

A277000 Numerators of an asymptotic series for the Gamma function (even power series).

Original entry on oeis.org

1, -1, 19, -2561, 874831, -319094777, 47095708213409, -751163826506551, 281559662236405100437, -49061598325832137241324057, 5012066724315488368700829665081, -26602063280041700132088988446735433, 40762630349420684160007591156102493590477
Offset: 0

Views

Author

Peter Luschny, Sep 25 2016

Keywords

Comments

Let y = x+1/2 then Gamma(x+1) ~ sqrt(2*Pi)*((y/E)*Sum_{k>=0} r(k)/y^(2*k))^y as x -> oo and r(k) = A277000(k)/A277001(k) (see example 6.1 in the Wang reference).

Examples

			The underlying rational sequence starts:
1, 0, -1/24, 0, 19/5760, 0, -2561/2903040, 0, 874831/1393459200, 0, ...
		

Crossrefs

Cf. A001163/A001164 (Stirling), A182935/A144618 (De Moivre), A005146/A005147 (Stieltjes), A090674/A090675 (Lanczos), A181855/A181856 (Nemes), A182912/A182913 (NemesG), A182916/A182917 (Wehmeier), A182919/A182920 (Gosper), A182914/A182915, A277002/A277003 (odd power series).
Cf. A276667/A276668 (the arguments of the Bell polynomials).

Programs

  • Maple
    b := n -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k,1/2), k=2..n))/n!:
    A277000 := n -> numer(b(2*n)): seq(A277000(n), n=0..12);
    # Alternatively the rational sequence by recurrence:
    R := proc(n) option remember; local k; `if`(n=0, 1,
    add(bernoulli(2*m+2,1/2)* R(n-m-1)/(2*m+1), m=0..n-1)/(2*n)) end:
    seq(numer(R(n)), n=0..12); # Peter Luschny, Sep 30 2016
  • Mathematica
    CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
    b[n_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, 1/2], {k, 2, n}]]]/n!;
    a[n_] := Numerator[b[2n]];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Sep 09 2018 *)

Formula

a(n) = numerator(b(2*n)) with b(n) = Y_{n}(0, z_2, z_3,..., z_n)/n! with z_k = k!*Bernoulli(k,1/2)/(k*(k-1)) and Y_{n} the complete Bell polynomials.
The rational numbers have the recurrence r(n) = (1/(2*n))*Sum_{m=0..n-1} Bernoulli(2*m+2,1/2)*r(n-m-1)/(2*m+1) for n>=1, r(0)=1. - Peter Luschny, Sep 30 2016
Showing 1-2 of 2 results.