A182936 Greatest common divisor of the proper divisors of n, 0 if there are none.
0, 0, 0, 2, 0, 1, 0, 2, 3, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 1, 5, 1, 3, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 7, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A182936 := n -> igcd(op(numtheory[divisors](n) minus {1,n})); seq(A182936(i), i=1..79); # Peter Luschny, Mar 22 2011
-
Mathematica
Join[{0}, Table[GCD@@Most[Rest[Divisors[n]]],{n,2,110}]] (* Harvey P. Dale, May 04 2018 *) (* From Peter Luschny, Jan 31 2025: (Start) *) Join[{0}, Table[Exp[MangoldtLambda[n]] - If[PrimeQ[n], n, 0], {n,2,110}]] (* or *) Table[Cyclotomic[n, 1] - If[PrimeQ[n], n, 0], {n,1,110}] (* End *)
-
PARI
A182936(n) = { my(divs=divisors(n)); if(#divs<3,0,gcd(vector(numdiv(n)-2,k,divs[k+1]))); }; \\ Antti Karttunen, Sep 23 2017
Formula
a(n) = 0 if n is not composite, p if n is a proper power of prime p, and 1 otherwise. - Franklin T. Adams-Watters, Mar 22 2011
From Peter Luschny, Jan 31 2025: (Start)
Extensions
More terms from Antti Karttunen, Sep 23 2017
Comments