cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182936 Greatest common divisor of the proper divisors of n, 0 if there are none.

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 2, 3, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 1, 5, 1, 3, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 7, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Peter Luschny, Mar 22 2011

Keywords

Comments

Here a proper divisor d of n is a divisor of n such that 1 < d < n.

Crossrefs

Programs

  • Maple
    A182936 := n -> igcd(op(numtheory[divisors](n) minus {1,n}));
    seq(A182936(i), i=1..79); # Peter Luschny, Mar 22 2011
  • Mathematica
    Join[{0}, Table[GCD@@Most[Rest[Divisors[n]]],{n,2,110}]] (* Harvey P. Dale, May 04 2018 *)
    (* From Peter Luschny, Jan 31 2025: (Start) *)
    Join[{0}, Table[Exp[MangoldtLambda[n]] - If[PrimeQ[n], n, 0], {n,2,110}]]
    (* or *)
    Table[Cyclotomic[n, 1] - If[PrimeQ[n], n, 0], {n,1,110}] (* End *)
  • PARI
    A182936(n) = { my(divs=divisors(n)); if(#divs<3,0,gcd(vector(numdiv(n)-2,k,divs[k+1]))); }; \\ Antti Karttunen, Sep 23 2017

Formula

a(n) = 0 if n is not composite, p if n is a proper power of prime p, and 1 otherwise. - Franklin T. Adams-Watters, Mar 22 2011
Conjecture: Sum_{k=1..n} a(k) = A072107(n) - A034387(n) - 1. - Vaclav Kotesovec, Jan 29 2025
From Peter Luschny, Jan 31 2025: (Start)
a(n) = A014963(n) - A061397(n) for n > 1. In other words, this sequence is the exponential von Mangoldt function restricted to proper divisors of n. See A380118. This implies the above conjecture.
a(n) = A020500(n) - A061397(n). (End)

Extensions

More terms from Antti Karttunen, Sep 23 2017