cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A121687 G.f. satisfies A(x) = 1 + x*A(x) * A( x*A(x) )^2.

Original entry on oeis.org

1, 1, 3, 14, 83, 574, 4432, 37244, 335153, 3194510, 32001596, 335019839, 3649450270, 41227610316, 481724831132, 5809341783543, 72177761136925, 922539273876404, 12115001489115910, 163284755614174305
Offset: 0

Views

Author

Paul D. Hanna, Aug 15 2006, Aug 20 2008

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 14*x^3 + 83*x^4 + 574*x^5 + 4432*x^6 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 34*x^3 + 203*x^4 + 1398*x^5 + 10706*x^6 +...
A(x*A(x)) = 1 + x + 4*x^2 + 23*x^3 + 160*x^4 + 1259*x^5 + 10833*x^6 +...
A(x*A(x))^2 = 1 + 2*x + 9*x^2 + 54*x^3 + 382*x^4 + 3022*x^5 + 25993*x^6 +...
A(x)*A(x*A(x))^2 = 1 + 3*x + 14*x^2 + 83*x^3 + 574*x^4 + 4432*x^5 +...
The logarithm of the g.f. is given by:
log(A(x)) = A(x)^2*x + {d/dx x*A(x)^4}*x^2/2! + {d^2/dx^2 x^2*A(x)^6}*x^3/3! + {d^3/dx^3 x^3*A(x)^8}*x^4/4! +...
		

Crossrefs

Cf. A383563, variants: A030266, A182953, A182954.

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=serreverse(x/(1+x*(A +x*O(x^n))^2))/x); polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1/(1-x*subst(A^2,x,x*A)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
    for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(2*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 15 2010
    
  • PARI
    {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 3*k))))} \\ Paul D. Hanna, Dec 15 2010

Formula

G.f. satisfies G(x) = x/(1 + x*A(x)^2) where G(x*A(x)) = x.
G.f. satisfies A(x) = 1/(1 - x*A(x*A(x))^2).
G.f. satisfies the following two equations (which are equivalent)
A(x) = exp( Sum_{m>=0} {d^m/dx^m x^m*A(x)^(2m+2)} * x^(m+1)/(m+1)! )
A(x) = exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^(2m)}*x^k]*x^m/m). - Paul D. Hanna, Dec 15 2010
Recurrence:
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,2k). - Paul D. Hanna, Dec 15 2010

A182953 G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^3.

Original entry on oeis.org

1, 1, 4, 25, 197, 1797, 18178, 198937, 2318858, 28487593, 366129764, 4896068759, 67843403960, 971032668429, 14319735032679, 217136949146091, 3379973833321141, 53936100582832901, 881318215466710693, 14731508761600217914
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 197*x^4 + 1797*x^5 +...
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 100*x^3 + 801*x^4 + 7296*x^5 + 73174*x^6 +...
A(x*A(x)) = 1 + x + 5*x^2 + 37*x^3 + 333*x^4 + 3389*x^5 + 37634*x^6 +...
A(x*A(x))^3 = 1 + 3*x + 18*x^2 + 142*x^3 + 1311*x^4 + 13461*x^5 +...
The g.f. satisfies:
log(A(x)) = A(x)^3*x + {d/dx x*A(x)^6}*x^2/2! + {d^2/dx^2 x^2*A(x)^9}*x^3/3! + {d^3/dx^3 x^3*A(x)^12}*x^4/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
    for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(3*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 3*k))))}

Formula

G.f. A(x) satisfies:
* A(x) = exp( Sum_{m>=0} {d^m/dx^m x^m*A(x)^(3m+3)} * x^(m+1)/(m+1)! );
* A(x) = exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^(3m)}*x^k]*x^m/m);
which are equivalent.
Recurrence:
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,3k).
Given g.f. A(x), then G(x) = 1 + x*A(x)^3 satisfies G(x/G(x)) = 1 + x*G(x)^2 and G(x) is the g.f. of A147664.

A384265 G.f. A(x) satisfies A( x/A(x)^2 + x^2 ) = 1 + x*A(x)^2.

Original entry on oeis.org

1, 1, 3, 16, 119, 1087, 11408, 132468, 1663047, 22234598, 313303201, 4618133168, 70815362628, 1124901511837, 18450127411436, 311636597558992, 5409374008212747, 96326565666389514, 1757212245656330130, 32798907320986196010, 625759879697614204041, 12192353855092076824051, 242419156191210763668352
Offset: 0

Views

Author

Paul D. Hanna, May 30 2025

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 119*x^4 + 1087*x^5 + 11408*x^6 + 132468*x^7 + 1663047*x^8 + 22234598*x^9 + 313303201*x^10 + ...
 where A( x/A(x)^2 + x^2 ) = 1 + x*A(x)^2.
RELATED SERIES.
The g.f. of A145347 begins
B(x) = 1 + x + 4*x^2 + 26*x^3 + 220*x^4 + 2203*x^5 + 24836*x^6 + 306104*x^7 + 4047988*x^8 + ... + A145347(n)*x^n + ...
 where B(x/B(x)) = 1 + x*B(x)^3
 also, B(x) = A( x*B(x) ).
The g.f. of A182954 begins
C(x) = 1 + x + 5*x^2 + 39*x^3 + 381*x^4 + 4284*x^5 + 53163*x^6 + 710810*x^7 + 10085621*x^8 + ... + A182954(n)*x^n + ...
 where C(x) = 1 + x*C(x) * C( x*C(x) )^4
 also, C(x) = A( x*C(x)^2 ).
C(x)^4 = 1 + 4*x + 26*x^2 + 220*x^3 + 2203*x^4 + 24836*x^5 + 306104*x^6 + ...
 where B(x) = 1 + x*C(x)^4.
RELATED TABLE.
The table of coefficients of x^k in A(x)^n begins
  n = 1: [ 1,  1,   3,   16,   119,   1087, ...];
  n = 2: [ 1, (2),  7,   38,   279,   2508, ...];
  n = 3: [ 1,  3, (12),  67,   489,   4338, ...];
  n = 4: [(1), 4,  18, (104),  759,   6664, ...];
  n = 5: [ 1,  5,  25,  150, (1100),  9586, ...];
  n = 6: [ 1, (6), 33,  206,  1524, (13218),...];
  n = 7: [ 1,  7,  42,  273,  2044,  17689, ...];
  n = 8: [ 1,  8, (52), 352,  2674,  23144, ...];
  n = 9: [ 1,  9,  63,  444,  3429,  29745, ...];
  n =10: [ 1, 10,  75, (550), 4325,  37672, ...];
  n =11: [ 1, 11,  88,  671,  5379,  47124, ...];
  n =12: [ 1, 12, 102,  808, (6609), 58320, ...];
  ...
in which the terms in parenthesis illustrate the property
(2.b) [x^n] A(x)^(n+1) = 2 * [x^(n-1)] A(x)^(2*n+2) for n >= 1.
Further, other terms along diagonals obey
(5.a) A145345(n) = [x^n] B(x) = [x^n] A(x)^(n+1)/(n+1), and
(5.b) A121687(n) = [x^n] C(x) = [x^n] A(x)^(2*n+1)/(2*n+1) for n >= 0.
		

Crossrefs

Cf. A383563, A145347 (B(x)), A182954 (C(x)).

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoef(x - serreverse(x/Ser(A)) + serreverse(x/Ser(A)^2)^2, #A) ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n along with B(x) = g.f. of A145347 and C(x) = g.f. of A182954 satisfy the following formulas.
(1.a) A( x/A(x)^2 + x^2 ) = 1 + x*A(x)^2.
(1.b) A(x) = A(x)^2 - x*A( sqrt(x - x/A(x)) )^4.
(2.a) x = Series_Reversion( x/A(x) ) - Series_Reversion( x/A(x)^2 )^2.
(2.b) [x^n] A(x)^(n+1) = 2 * [x^(n-1)] A(x)^(2*n+2) for n >= 1.
(2.c) B(x) = 1 + x*C(x)^4 where B(x) = A( x*B(x) ) and C(x) = A( x*C(x)^2 ).
(3.a) A(x) = B( x/A(x) ) where B(x/B(x)) = 1 + x*B(x)^3.
(3.b) A(x) = C( x/A(x)^2 ) where C(x) = 1 + x*C(x) * C( x*C(x) )^4.
(4.a) A(x) = A(x)^2 - x*C( x/A(x) )^4.
(4.b) C(x/A(x)) = A( sqrt(x - x/A(x)) ) = A( x/A(x) * C(x/A(x))^2 ).
(4.c) B(x/A(x)^2) = 1 + x*A(x)^2 = A( x/A(x)^2 * B(x/A(x)^2) ).
(5.a) A145347(n) = [x^n] B(x) = [x^n] A(x)^(n+1)/(n+1) for n >= 0.
(5.b) A182954(n) = [x^n] C(x) = [x^n] A(x)^(2*n+1)/(2*n+1) for n >= 0.
(5.c) A145347(n) = [x^(n-1)] C(x)^4 = [x^(n-1)] A(x)^(2*n+2)*2/(n+1) for n >= 1.

A182955 G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^5.

Original entry on oeis.org

1, 1, 6, 56, 651, 8671, 126997, 1997798, 33260799, 580270730, 10534337521, 197986746949, 3837397114948, 76473239154148, 1563252546786254, 32716989219013821, 699959257347957763, 15288884723649589585
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 56*x^3 + 651*x^4 + 8671*x^5 +...
Related expansions:
A(x*A(x)) = 1 + x + 7*x^2 + 74*x^3 + 953*x^4 + 13846*x^5 +...
A(x*A(x))^5 = 1 + 5*x + 45*x^2 + 520*x^3 + 6950*x^4 + 102481*x^5 +...
The g.f. satisfies:
log(A(x)) = A(x)^5*x + {d/dx x*A(x)^10}*x^2/2! + {d^2/dx^2 x^2*A(x)^15}*x^3/3! + {d^3/dx^3 x^3*A(x)^20}*x^4/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
    for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(5*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 5*k))))}

Formula

G.f. A(x) satisfies:
* A(x) = exp( Sum_{m>=0} {d^m/dx^m x^m*A(x)^(5m+5)} * x^(m+1)/(m+1)! );
* A(x) = exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^(5m)}*x^k]*x^m/m);
which are equivalent.
Recurrence:
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,5k).
Showing 1-4 of 4 results.