A182971 Triangle read by rows: coefficients in expansion of Q(n) = (x-n^2)*(x-(n-2)^2)*(x-(n-4)^2)*...*(x-(1 or 2)^2), highest powers first.
1, 1, -1, 1, -4, 1, -10, 9, 1, -20, 64, 1, -35, 259, -225, 1, -56, 784, -2304, 1, -84, 1974, -12916, 11025, 1, -120, 4368, -52480, 147456, 1, -165, 8778, -172810, 1057221, -893025, 1, -220, 16368, -489280, 5395456, -14745600, 1, -286, 28743, -1234948, 21967231, -128816766, 108056025, 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400
Offset: 0
Examples
Triangle begins: 1 1, -1 1, -4 1, -10, 9 1, -20, 64 1, -35, 259, -225 1, -56, 784, -2304 1, -84, 1974, -12916, 11025 1, -120, 4368, -52480, 147456 1, -165, 8778, -172810, 1057221, -893025 1, -220, 16368, -489280, 5395456, -14745600 ... E.g. for n=5 Q(5) = (x-1^2)*(x-3^2)*(x-5^2) = x^3-35*x^2+259*x-225.
Crossrefs
Programs
-
Maple
Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2,i=1..n/2))); else sort(expand(mul(x-(2*i+1)^2,i=0..(n-1)/2))); fi; for n from 0 to 12 do t1:=eval(Q(n)); t1d:=degree(t1); t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20)); lprint(t2); od:
Formula
For n even, let Q(n) = Product_{i=1..n/2} (x - (2*i)^2) and for n odd let Q(n) = Product_{i=0..(n-1)/2} (x - (2i+1)^2). n-th row of triangle gives coefficients in expansion of Q(n).
Comments