A138121
Triangle read by rows in which row n lists the partitions of n that do not contain 1 as a part in juxtaposed reverse-lexicographical order followed by A000041(n-1) 1's.
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 5, 3, 6, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 4, 6, 3, 3, 3, 3, 7, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2
Offset: 1
Triangle begins:
[1];
[2],[1];
[3],[1],[1];
[4],[2,2],[1],[1],[1];
[5],[3,2],[1],[1],[1],[1],[1];
[6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1];
[7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1];
...
The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences.
---------------------------------------------------------
Partitions A194805 Table 1.0
. of 7 p(n) A194551 A135010
---------------------------------------------------------
7 15 7 7 . . . . . .
4+3 4 4 . . . 3 . .
5+2 5 5 . . . . 2 .
3+2+2 3 3 . . 2 . 2 .
6+1 11 6 1 6 . . . . . 1
3+3+1 3 1 3 . . 3 . . 1
4+2+1 4 1 4 . . . 2 . 1
2+2+2+1 2 1 2 . 2 . 2 . 1
5+1+1 7 1 5 5 . . . . 1 1
3+2+1+1 1 3 3 . . 2 . 1 1
4+1+1+1 5 4 1 4 . . . 1 1 1
2+2+1+1+1 2 1 2 . 2 . 1 1 1
3+1+1+1+1 3 1 3 3 . . 1 1 1 1
2+1+1+1+1+1 2 2 1 2 . 1 1 1 1 1
1+1+1+1+1+1+1 1 1 1 1 1 1 1 1 1
. 1 ---------------
. *<------- A000041 -------> 1 1 2 3 5 7 11
. A182712 -------> 1 0 2 1 4 3
. A182713 -------> 1 0 1 2 2
. A182714 -------> 1 0 1 1
. 1 0 1
. A141285 A182703 1 0
. A182730 A182731 1
---------------------------------------------------------
. A138137 --> 1 2 3 6 9 15..
---------------------------------------------------------
. A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747
---------------------------------------------------------
.
. A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733
. . . . . 1 . . . .
. . . . 2 1 . . . .
. . 3 . . 1 2 . . .
. Table 2.0 . . 2 2 1 . . 3 . Table 2.1
. . . . . 1 2 2 . .
. 1 . . . .
.
. A182982 A182742 A194803 A182983 A182743
. A182992 A182994 A194804 A182993 A182995
---------------------------------------------------------
.
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
Illustration of initial terms:
---------------------------------------
n j Diagram Parts
---------------------------------------
. _
1 1 |_| 1;
. _ _
2 1 |_ | 2,
2 2 |_| . 1;
. _ _ _
3 1 |_ _ | 3,
3 2 | | . 1,
3 3 |_| . . 1;
. _ _ _ _
4 1 |_ _ | 4,
4 2 |_ _|_ | 2, 2,
4 3 | | . 1,
4 4 | | . . 1,
4 5 |_| . . . 1;
. _ _ _ _ _
5 1 |_ _ _ | 5,
5 2 |_ _ _|_ | 3, 2,
5 3 | | . 1,
5 4 | | . . 1,
5 5 | | . . 1,
5 6 | | . . . 1,
5 7 |_| . . . . 1;
. _ _ _ _ _ _
6 1 |_ _ _ | 6,
6 2 |_ _ _|_ | 3, 3,
6 3 |_ _ | | 4, 2,
6 4 |_ _|_ _|_ | 2, 2, 2,
6 5 | | . 1,
6 6 | | . . 1,
6 7 | | . . 1,
6 8 | | . . . 1,
6 9 | | . . . 1,
6 10 | | . . . . 1,
6 11 |_| . . . . . 1;
...
(End)
-
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *)
Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}] // Flatten (* Robert Price, May 11 2020 *)
A141285
Largest part of the n-th partition of j in the list of colexicographically ordered partitions of j, if 1 <= n <= A000041(j).
Original entry on oeis.org
1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 6, 5, 9, 4, 8, 7, 6, 12
Offset: 1
Written as a triangle T(j,k) the sequence begins:
1;
2;
3;
2, 4;
3, 5;
2, 4, 3, 6;
3, 5, 4, 7;
2, 4, 3, 6, 5, 4, 8;
3, 5, 4, 7, 3, 6, 5, 9;
2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10;
3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11;
...
------------------------------------------
n A000041 a(n)
------------------------------------------
1 = p(1) 1
2 = p(2) 2 .
3 = p(3) . 3
4 2 .
5 = p(4) 4 .
6 . 3
7 = p(5) . 5
8 2 .
9 4 .
10 3 .
11 = p(6) 6 .
12 . 3
13 . 5
14 . 4
15 = p(7) . 7
...
From _Omar E. Pol_, Aug 22 2013: (Start)
Illustration of initial terms (n = 1..11) in three ways: as the largest parts of the partitions of 6 (see A026792), also as the largest parts of the regions of the diagram, also as the diagonal of triangle. By definition of "region" the largest part of the n-th region is also the largest part of the n-th partition (see below):
--------------------------------------------------------
. Diagram Triangle in which
Partitions of regions rows are partitions
of 6 and partitions and columns are regions
--------------------------------------------------------
. _ _ _ _ _ _
6 _ _ _ | 6
3+3 _ _ _|_ | 3 3
4+2 _ _ | | 4 2
2+2+2 _ _|_ _|_ | 2 2 2
5+1 _ _ _ | | 5 1
3+2+1 _ _ _|_ | | 3 1 1
4+1+1 _ _ | | | 4 1 1
2+2+1+1 _ _|_ | | | 2 2 1 1
3+1+1+1 _ _ | | | | 3 1 1 1
2+1+1+1+1 _ | | | | | 2 1 1 1 1
1+1+1+1+1+1 | | | | | | 1 1 1 1 1 1
...
The equivalent sequence for compositions is A001511. Explanation: for the positive integer j the diagram of regions of the set of compositions of j has 2^(j-1) regions. The largest part of the n-th region is A001511(n). The number of parts is A006519(n). On the other hand the diagram of regions of the set of partitions of j has A000041(j) regions. The largest part of the n-th region is a(n) = A001511(A228354(n)). The number of parts is A194446(n). Both diagrams have j sections. The diagram for partitions can be interpreted as one of the three views of a three dimensional diagram of compositions in which the rows of partitions are in orthogonal direction to the rest. For the first five sections of the diagrams see below:
--------------------------------------------------------
. Diagram Diagram
. of regions of regions
. and compositions and partitions
---------------------------------------------------------
. j = 1 2 3 4 5 j = 1 2 3 4 5
---------------------------------------------------------
n A001511 A228354 a(n)
---------------------------------------------------------
1 1 _| | | | | ............ 1 1 _| | | | |
2 2 _ _| | | | ............ 2 2 _ _| | | |
3 1 _| | | | ......... 4 3 _ _ _| | |
4 3 _ _ _| | | ../ ....... 6 2 _ _| | |
5 1 _| | | | / ....... 8 4 _ _ _ _| |
6 2 _ _| | | ../ / .... 12 3 _ _ _| |
7 1 _| | | / / . 16 5 _ _ _ _ _|
8 4 _ _ _ _| | ../ / /
9 1 _| | | | / /
10 2 _ _| | | / /
11 1 _| | | / /
12 3 _ _ _| | ../ /
13 1 _| | | /
14 2 _ _| | /
15 1 _| | /
16 5 _ _ _ _ _| ../
...
Also we can draw an infinite Dyck path in which the n-th odd-indexed line segment has a(n) up-steps and the n-th even-indexed line segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two successive valleys at height 0 is also the partition number A000041(n). See below:
. 5
. /\ 3
. 4 / \ 4 /\
. /\ / \ /\ /
. 3 / \ 3 / \ / \/
. 2 /\ 2 / \ /\/ \ 2 /
. 1 /\ / \ /\/ \ / \ /\/
. /\/ \/ \/ \/ \/
.
.(End)
Cf.
A000041,
A135010,
A182730,
A182731,
A182732,
A182733,
A182982,
A182983,
A182703,
A193870,
A194446,
A194447,
A194550,
A206437,
A210979,
A210980,
A211978,
A220517,
A225600,
A225610.
-
Last/@DeleteCases[DeleteCases[Sort@PadRight[Reverse/@IntegerPartitions[13]], x_ /; x == 0, 2], {}] (* updated _Robert Price, May 15 2020 *)
Better definition and edited by
Omar E. Pol, Oct 17 2013
A182982
Triangle read by rows: row n lists the parts of the n-th shell of the table A182742.
Original entry on oeis.org
2, 2, 4, 2, 2, 3, 3, 6, 2, 2, 2, 2, 3, 5, 4, 4, 8, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 3, 7, 4, 6, 5, 5, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 6, 3, 4, 5, 3, 9, 4, 4, 4, 4, 8, 5, 7, 6, 6, 12, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Triangle begins:
2,
2, 4,
2, 2, 3, 3, 6,
2, 2, 2, 2, 3, 5, 4, 4, 8,
2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 3, 7, 4, 6, 5, 5, 10
A182732
The limit of row A182730(n,.) as n-> infinity.
Original entry on oeis.org
2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 6, 5, 9, 4, 8, 7, 6, 12, 5, 4, 8, 7, 6, 11, 6, 5, 10, 9, 8, 7, 14, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 4, 8, 7, 6, 12, 6, 11, 10, 9, 8, 16, 3, 6, 5, 9, 4, 8, 7, 6, 12, 7, 6, 11, 5, 10, 9, 8, 15, 6, 5, 10, 9, 8, 7, 14, 8, 7, 13, 6, 12, 11, 10, 9, 18
Offset: 1
One together with where records occur give
A182746.
A182733
The limit of row A182731(n,.) as n-> infinity.
Original entry on oeis.org
3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 3, 6, 5, 9, 4, 8, 7, 6, 12, 7, 6, 11, 5, 10, 9, 8, 15, 5, 4, 8, 7, 6, 11, 6, 5, 10, 9, 8, 7, 14, 5, 9, 8, 7, 13, 7, 6, 12, 11, 10, 9, 17, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 4, 8, 7, 6, 12, 6, 11, 10, 9, 8, 16, 7, 6, 11, 5, 10, 9, 8, 15, 9, 8, 7, 14, 7, 13, 12, 11, 10, 19
Offset: 1
Zero together with where records occur give
A182747.
A182995
Sum of parts of the n-th subsection of the head of the last section of the set of partitions of any odd integer >= 2n+1.
Original entry on oeis.org
3, 7, 18, 44, 82, 158, 303, 507, 873, 1470, 2354, 3756, 5923, 9065, 13815, 20824, 30853, 45365, 66210, 95415, 136696, 194414, 274057, 384136, 535219, 740559, 1019529, 1396212, 1901533, 2577918, 3479291, 4673711, 6253003, 8332767
Offset: 1
a(5)=82 because the 5th subsection of the head of the last section of any odd integer >= 11 looks like this:
(11 . . . . . . . . . . )
( 6 . . . . . 5 . . . . )
( 7 . . . . . . 4 . . . )
( 8 . . . . . . . 3 . . )
( 4 . . . 4 . . . 3 . . )
( 5 . . . . 3 . . 3 . . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
There are 21 parts whose sum is 11+6+5+7+4+8+3+4+4+3+5+3+3+2+2+2+2+2+2+2+2 = 11*6 + 2*8 = 82, so a(5) = 82.
a(17) corrected and more terms from Omar E. Pol, Mar 03 2011.
A182993
Number of parts of the n-th subshell of the head of the last section of the set of partitions of any odd integer >= 2n+1.
Original entry on oeis.org
1, 2, 5, 12, 21, 39, 73, 118, 198, 326, 510, 797, 1234, 1854, 2778, 4122, 6014, 8717, 12550, 17849, 25252, 35486, 49447, 68540, 94480, 129378, 176339, 239165, 322676, 433487, 579907, 772318, 1024691, 1354445, 1783504
Offset: 1
a(5)=21 because the 5th subshell of the head of the last section of any odd integer >= 11 looks like this:
(11 . . . . . . . . . . )
( 6 . . . . . 5 . . . . )
( 7 . . . . . . 4 . . . )
( 8 . . . . . . . 3 . . )
( 4 . . . 4 . . . 3 . . )
( 5 . . . . 3 . . 3 . . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
The subshell has 21 parts, so a(5)=21.
A194803
Number of parts that are visible in one of the three views of the shell model of partitions version "Tree" with n shells.
Original entry on oeis.org
0, 1, 3, 5, 8, 11, 17, 23, 33, 46, 64, 86, 121, 161, 217, 291, 388, 507, 671, 870, 1131, 1458, 1872, 2383, 3042, 3840, 4841, 6076, 7605, 9460, 11765, 14544, 17950, 22073, 27077, 33092, 40395, 49113, 59611, 72162, 87185, 105035, 126366
Offset: 0
Illustration of one of the three views with seven shells:
1) Small version:
.
Level
1 A182732 <- 6 3 4 2 1 3 5 4 7 -> A182733
2 3 2 2 1 2 2 3
3 2 1 2
4 1
5 Table 2.0 1 Table 2.1
6 1
7 1
.
. A182742 A182982 A182743 A182983
. A182992 A182994 A182993 A182995
.
2) Large version:
.
. . . . . 1 . . . .
. . . . 1 2 . . . .
. . 1 . . 2 1 . . .
. . . 1 2 2 . . 1 .
. . . . . 2 2 1 . .
. 1 2 2 3 2 . . . .
. 2 3 2 2 1
.
The large version shows the parts labeled with the level of the part where "the level of a part" is its position in the partition. In both versions there are 23 parts that are visible, so a(7) = 23. Also using the formula we have a(7) = 7+8+8 = 23.
Cf.
A006128,
A096541,
A138135,
A135010,
A138121,
A141285,
A182732,
A182733,
A182742,
A182743,
A182982,
A182983,
A182992-
A182995,
A194804,
A194805,
A210979.
A194797
Imbalance of the sum of parts of all partitions of n.
Original entry on oeis.org
0, -2, 1, -7, 3, -21, 7, -49, 23, -97, 57, -195, 117, -359, 256, -624, 498, -1086, 909, -1831, 1634, -2986, 2833, -4847, 4728, -7700, 7798, -12026, 12537, -18633, 19745, -28479, 30723, -42955, 47100, -64284, 71136, -95228, 106402, -139718, 157327, -203495
Offset: 1
For n = 6 the illustration of the three views of the shell model with 6 shells shows an imbalance (see below):
------------------------------------------------------
Partitions Tree Table 1.0
of 6. A194805 A135010
------------------------------------------------------
6 6 6 . . . . .
3+3 3 3 . . 3 . .
4+2 4 4 . . . 2 .
2+2+2 2 2 . 2 . 2 .
5+1 1 5 5 . . . . 1
3+2+1 1 3 3 . . 2 . 1
4+1+1 4 1 4 . . . 1 1
2+2+1+1 2 1 2 . 2 . 1 1
3+1+1+1 1 3 3 . . 1 1 1
2+1+1+1+1 2 1 2 . 1 1 1 1
1+1+1+1+1+1 1 1 1 1 1 1 1
------------------------------------------------------
.
. 6 3 4 2 1 3 5
. Table 2.0 . . . . 1 . . Table 2.1
. A182982 . . . 2 1 . . A182983
. . 3 . . 1 2 .
. . . 2 2 1 . .
. . . . . 1
------------------------------------------------------
The sum of all parts > 1 on the left hand side is 34 and the sum of all parts > 1 on the right hand side is 13, so a(6) = -34 + 13 = -21. On the other hand for n = 6 the first n terms of A138880 are 0, 2, 3, 8, 10, 24 thus a(6) = 0-2+3-8+10-24 = -21.
Cf.
A000041,
A002865,
A135010,
A138121,
A138880,
A141285,
A182710,
A182742,
A182743,
A182746,
A182747,
A182982,
A182983,
A182994,
A182995,
A194796,
A194805.
-
with(combinat):
a:= proc(n) option remember;
n *(-1)^n *(numbpart(n-1)-numbpart(n)) +a(n-1)
end: a(0):=0:
seq(a(n), n=1..50); # Alois P. Heinz, Apr 04 2012
-
a[n_] := Sum[(-1)^(k-1)*k*(PartitionsP[k] - PartitionsP[k-1]), {k, 1, n}]; Array[a, 50] (* Jean-François Alcover, Dec 09 2016 *)
A194804
Sum of parts that are visible in one of the three views of the shell model of partitions version "tree" with n shells.
Original entry on oeis.org
0, 1, 4, 8, 15, 23, 40, 59, 92, 137, 202, 285, 418, 577, 802, 1106, 1511, 2019, 2724, 3598, 4755, 6226, 8107, 10462, 13523, 17280, 22029, 27953, 35350, 44416, 55763, 69579, 86634, 107459, 132914, 163768, 201475, 246841, 301822, 368033, 447790, 543206
Offset: 0
Illustration of one of the three views with seven shells:
.
. A182732 <- 6 3 4 2 1 3 5 4 7 -> A182733
. . . . . 1 . . . .
. . . . 2 1 . . . .
. Table 2.0 . 3 . . 1 2 . . . Table 2.1
. . . 2 2 1 . . 3 .
. . . . . 1 2 2 . .
. 1 . . . .
. A182742 A182982 A182743 A182983
. A182992 A182994 A182993 A182995
.
The sum of parts that are visible is 1+1+1+1+1+1+1+2+2+2+2+2+2+2+3+3+3+3+4+4+5+6+7 = 59, so a(7) = 59. Using the formula we have a(7) = 7+24+28 = 59.
Cf.
A002865,
A066186,
A135010,
A138121,
A138880,
A182732,
A182733,
A182742,
A182743,
A182982,
A182983,
A182992-
A182995,
A194803,
A194805.
Showing 1-10 of 15 results.
Comments