cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182987 Least a + b such that a*b = A002110(n), the product of the first n primes, where a, b are positive integers.

Original entry on oeis.org

2, 3, 5, 11, 29, 97, 347, 1429, 6229, 29873, 160879, 895681, 5448239, 34885673, 228759799, 1568299433, 11417382973, 87698582693, 684947829299, 5606539600699, 47241542381273, 403631914511993, 3587558929043927, 32684217334524347, 308342289648328511, 3036819365023723883
Offset: 0

Views

Author

Risto Kauppila, Feb 06 2011

Keywords

Comments

Original definition (not applicable for n = 0 and 1, but equivalent for n >= 2):
Let p(S) be product of integers in S. a(n) is minimum of p(S_1) + p(S_2) over all partitions of first n primes into sets S_1 and S_2.
Also: Least integer such that a(n)^2 - 4*A002110(n) is a square. - David Broadhurst, Sep 20 2011
The integers a,b are the two median divisors of primorial(n), a = A060795(n) = A060775(A002110(n)) and b = A060796(n) = A033677(A002110(n)). (For n = 0, a = b = 1 of course.) - M. F. Hasler, Sep 20 2011

Examples

			a(3) = 11 = min{ 2*3 + 5 = 11, 2*5 + 3 = 13, 3*5 + 2 = 17 }
Or, a(3) = 11 = min { 1+30, 2+15, 3+10, 5+6 } because A002110(3) = 2*3*5 = 30 = 2*15 = 3*10 = 5*6.
		

Crossrefs

Cf. A000196 (integer sqrt), A002110 (primorial), A010052 (is_square).

Programs

  • Mathematica
    a[0] = 2; a[n_] := Module[{m = Times @@ Prime[Range[n]]}, For[an = 2 Floor[Sqrt[m]] + 1, an <= m + 2, an += 2, If[IntegerQ[Sqrt[an^2 - 4 m]], Return[an]]]]; Table[an = a[n]; Print[an]; an, {n, 0, 25}] (* Jean-François Alcover, Oct 20 2016, adapted from PARI *)
  • PARI
    A182987(n)={if(n,vecsum(divisors(vecprod(primes(n)))[2^(n-1)..2^(n-1)+1]),2)}  \\ Needs stack size >= 2^(n+6). - M. F. Hasler, Sep 20 2011, edited Mar 24 2022
    
  • PARI
    A182987(n)={ n||return(2); my(m=prod(k=1,n,prime(k))); forstep(a=2*sqrtint(m)+1,m+2,2, issquare(a^2-4*m) & return(a)) }  \\ Slow for n >= 28, but needs not much memory. - M. F. Hasler, following an idea from David Broadhurst, Sep 20 2011
    
  • Python
    def A182987(n): # becomes slow for n >= 28, but not slower than memory-hungry
       # sum(divisors(primorial(n))[2**(n-1)-1:2**(n-1)+1]) if n else 2
       "Compute A182987(n) = sum of the two central divisors of primorial(n)."
       if n < 2: return n+2
       from math import isqrt # = A000196
       from sympy import primorial # = A002110
       from sympy.ntheory.primetest import is_square # = A010052
       m = primorial(n)*4; a = isqrt(m)|1  ### ceil(sqrt(m))**2 < m  for n = 26..27 !!
       while True:
          if is_square(a*a - m): return a
          a += 2
    # M. F. Hasler, Mar 21 2022

Formula

a(n) = A060795(n) + A060796(n). - M. F. Hasler, Sep 20 2011
Conjecture: Limit_{N->oo} (Sum_{n=1..N} log(a(n)-2*sqrt(prime(n)#))) / (Sum_{n=1..N} prime(n)) = 2/e - 1/2 (i.e., A135002 - 1/2). - Alain Rocchelli, Nov 30 2023

Extensions

First term and example corrected, as empty sets have product 1, by Phil Carmody, Sep 20 2011
Simpler definition and extension to n = 0 by M. F. Hasler, Sep 20 2011
b-file extended to a(59) with results from R. Gerbicz (cf. 2nd Broadhurst link) by M. F. Hasler, Mar 22 2022
a(60)-a(70) in b-file from Max Alekseyev, Apr 20 2022