cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182988 The number of dominance pairs of integer partitions of n according to either/or dominance order, where dominance between two partitions x and y means that x is majorized by y or y is majorized by x.

Original entry on oeis.org

1, 1, 4, 9, 25, 49, 117, 217, 454, 830, 1594, 2796, 5159, 8777, 15415, 25810, 43819, 71595, 118629, 190148, 307519, 485660, 769382, 1195807, 1864617, 2857630, 4384962, 6641332, 10052272, 15043925, 22501510, 33315580, 49267369, 72250341, 105746966, 153646123
Offset: 0

Views

Author

Stephen DeSalvo, Feb 06 2011, Feb 13 2011

Keywords

Comments

For two integer partitions of n chosen uniformly at random, a(n)/p(n)^2, where p(n) is the number of partitions of n, is the probability that one dominates the other.
As an example, consider the partitions (4,3,1) and (3,3,2).
4 >= 3, 4+3 >= 3+3, and 4+3+1 = 3+3+2, so we say (4,3,1) majorizes/dominates (3,3,2).
As a non-example, consider (4,1,1,1) and (3,3,1).
4 >= 3, but 4+1 < 3+3, so (4,1,1,1) does NOT dominate (3,3,1).
3 < 4, so (3,3,1) does NOT dominate (4,1,1,1).
Thus the pair (4,1,1,1) and (3,3,1) is not a dominance pair, and does not contribute to a(7).

Examples

			For n=1,2,3,4,5, a(n) = p(n)^2, since these values of n give a linear order for integer partitions.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, i, j, t) option remember; `if`(n0,
           b(n, m, i, j-1, true), 0)+b(n, m, i-1, j, false)+
           b(n-i, m-j, min(n-i,i), min(m-j,j), true))))
        end:
    a:= n-> 2*b(n$4, true)-combinat[numbpart](n):
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 09 2015
  • Mathematica
    b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[n0, b[n, m, i, j-1, True], 0] + b[n, m, i-1, j, False] + b[n-i, m-j, Min[n-i, i], Min[m-j, j], True]]]]; a[n_] := 2*b[n, n, n, n, True] - PartitionsP[n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 09 2016 after Alois P. Heinz *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 07 2015