A182988 The number of dominance pairs of integer partitions of n according to either/or dominance order, where dominance between two partitions x and y means that x is majorized by y or y is majorized by x.
1, 1, 4, 9, 25, 49, 117, 217, 454, 830, 1594, 2796, 5159, 8777, 15415, 25810, 43819, 71595, 118629, 190148, 307519, 485660, 769382, 1195807, 1864617, 2857630, 4384962, 6641332, 10052272, 15043925, 22501510, 33315580, 49267369, 72250341, 105746966, 153646123
Offset: 0
Keywords
Examples
For n=1,2,3,4,5, a(n) = p(n)^2, since these values of n give a linear order for integer partitions.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms n=1..55 from Stephen DeSalvo)
- Wikipedia, Dominance Order
- Wikipedia, Majorization
Programs
-
Maple
b:= proc(n, m, i, j, t) option remember; `if`(n
0, b(n, m, i, j-1, true), 0)+b(n, m, i-1, j, false)+ b(n-i, m-j, min(n-i,i), min(m-j,j), true)))) end: a:= n-> 2*b(n$4, true)-combinat[numbpart](n): seq(a(n), n=0..35); # Alois P. Heinz, Dec 09 2015 -
Mathematica
b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[n
0, b[n, m, i, j-1, True], 0] + b[n, m, i-1, j, False] + b[n-i, m-j, Min[n-i, i], Min[m-j, j], True]]]]; a[n_] := 2*b[n, n, n, n, True] - PartitionsP[n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 09 2016 after Alois P. Heinz *)
Extensions
a(0)=1 prepended by Alois P. Heinz, Jul 07 2015
Comments