cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A248476 Number of pairs (not necessarily successors) of partitions of n that are incomparable in dominance (natural, majorization) ordering.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 8, 30, 70, 170, 340, 770, 1424, 2810, 5166, 9542, 16614, 29596, 49952, 85610, 141604, 234622, 379218, 616008, 976134, 1549134, 2418768, 3771252, 5795300, 8903306, 13497384, 20438432, 30630108, 45789134, 67857566, 100346480, 147170162, 215341690
Offset: 1

Views

Author

Wouter Meeussen, Oct 07 2014

Keywords

Comments

a(n) is always even since each incomparable pair (p1,p2) has a distinct companion (p2,p1).

Crossrefs

Programs

  • Mathematica
    Table[Count[ Flatten[Outer[dominant , Partitions[n], Partitions[n], 1]], 0], {n, 24}] (* see A248475 for definition of 'dominant' *)

Formula

a(n) = p(n)^2 - A182988(n), where p(n) denotes the number of partitions of n, A000041(n).

A248475 Number of pairs of partitions of n that are successors in reverse lexicographic order, but incomparable in dominance (natural, majorization) ordering.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 4, 6, 9, 12, 17, 22, 30, 39, 51, 65, 85, 107, 136, 171, 216, 268, 335, 413, 512, 629, 772, 941, 1151, 1396, 1694, 2046, 2471, 2969, 3569, 4271, 5110, 6093, 7258, 8620, 10235, 12113, 14325, 16902, 19925, 23434, 27540, 32296, 37842, 44260, 51715, 60322, 70306, 81805
Offset: 1

Views

Author

Wouter Meeussen, Oct 07 2014

Keywords

Comments

Empirical: a(n) is the number of zeros in the subdiagonal of the lower-triangular matrix of coefficients giving the expansion of degree-n complete homogeneous symmetric functions in the Schur basis of the algebra of symmetric functions. - John M. Campbell, Mar 18 2018

Examples

			The successor pair (3,1,1,1) and (2,2,2) are incomparable in dominance ordering, and so are their transposes (4,1,1) and (3,3) and these are the two only pairs for n=6, hence a(6)=2.
		

References

  • Ian G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, 1979, pp. 6-8.

Crossrefs

Programs

  • Mathematica
    Needs["Combinatorica`"];
    dominant[par1_?PartitionQ,par2_?PartitionQ]:= Block[{le=Max[Length[par1],Length[par2]],acc},
    acc=Accumulate[PadRight[par1,le]]-Accumulate[PadRight[par2,le]];Which[Min[acc]===0&&Max[acc]>=0,1,Min[acc]<=0&&Max[acc]===0,-1,True,0]];
    Table[Count[Apply[dominant, Partition[Partitions[n], 2,1], 1],0], {n,40}]

A265506 Number of pairs (p,q) of partitions of n into distinct parts such that p majorizes q in the dominance order.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 15, 21, 35, 54, 75, 115, 161, 238, 349, 486, 673, 972, 1323, 1840, 2562, 3478, 4711, 6407, 8624, 11533, 15502, 20574, 27194, 36030, 47320, 61833, 81139, 105286, 136845, 177369, 228563, 293787, 377803, 483090, 616546, 785925, 997987
Offset: 0

Views

Author

Alois P. Heinz, Dec 09 2015

Keywords

Examples

			a(3) = 3: (21,21), (3,21), (3,3).
a(4) = 3: (31,31), (4,31), (4,4).
a(5) = 6: (32,32), (41,32), (41,41), (5,32), (5,41), (5,5).
a(6) = 10: (321,321), (42,321), (42,42), (51,321), (51,42), (51,51), (6,321), (6,42), (6,51), (6,6).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, i, j, t) option remember; `if`(n0, b(n, m, i, j-1, true), 0)+
          b(n, m, i-1, j, false)+b(n-i, m-j, max(0, min(n-i, i-1)),
          max(0, min(m-j, j-1)), true))))
        end:
    a:= n-> b(n$4, true):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[n < m, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j-1, True], 0] + b[n, m, i-1, j, False] + b[n-i, m-j, Max[0, Min[n-i, i-1]], Max[0, Min[m-j, j-1]], True]]]]; a[n_] := b[n, n, n, n, True]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)

A182989 Partial sums of A182731.

Original entry on oeis.org

1, 4, 7, 12, 15, 20, 24, 31, 34, 39, 43, 50, 53, 59, 64, 75, 78, 83, 89
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2011

Keywords

Comments

I would like a table for this sequence. Then I would like to see the graphics!

Crossrefs

Showing 1-4 of 4 results.