A183058 Cyclops Sophie-Germain primes.
509, 809, 12011, 12041, 13049, 14081, 16091, 18041, 21011, 21089, 22013, 22079, 23099, 25073, 28019, 29021, 29033, 31019, 33023, 33053, 35069, 35081, 35099, 36083, 37013, 37049, 38039, 39089, 41081, 42023, 42071, 42089, 43013
Offset: 1
Examples
509 is in the sequence because 509 is a Sophie Germain prime A005384 and it is also a Cyclops number A134808.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..2000
Programs
-
Maple
isA005384 := proc(n) isprime(n) and isprime(2*n+1) ; end proc: isA134808 := proc(n) local dgs,ndgs; dgs := convert(n,base,10) ; mdg := (nops(dgs)+1)/2 ; if type(nops(dgs),'even') then false; elif n = 0 then true; else if op(mdg,dgs) <> 0 then false; else if mul(op(k,dgs),k=1..mdg-1) =0 or mul(op(k,dgs),k=mdg+1..nops(dgs)) = 0 then false; else true; end if; end if; end if; end proc: isA183058 := proc(n) isA005384(n) and isA134808(n) ; end proc: for n from 0 to 50000 do if isA183058(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jan 05 2011
-
Mathematica
csgpQ[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn];PrimeQ[2n+1]&&OddQ[len]&&idn[[(len+1)/2]]==0&&Count[idn,0]==1]; Select[Prime[ Range[ 4500]],csgpQ] (* Harvey P. Dale, Jun 06 2020 *)
Comments