A183093 a(n) = number of divisors d of n such that d > 1 and if d = Product_(i) (p_i^e_i) then e_i = 1 for at least one i.
0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 4, 1, 4, 3, 3, 1, 5, 1, 3, 1, 4, 1, 7, 1, 1, 3, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 6, 1, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 10, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 6, 1, 3, 4, 4, 3, 7, 1, 6, 1, 3, 1, 10, 3, 3, 3, 5, 1, 10, 3, 4, 3, 3, 3, 7, 1, 4, 4, 5
Offset: 1
Keywords
Examples
For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 4.
Links
Programs
-
Mathematica
nonpowQ[n_] := Min[FactorInteger[n][[;;, 2]]] == 1; a[n_] := DivisorSum[n, 1 &, # > 1 && nonpowQ[#] &]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
-
PARI
a(n) = sumdiv(n, d, d > 1 && vecmin(factor(d)[, 2]) == 1); \\ Amiram Eldar, Jan 30 2025
-
Scheme
(define (A183093 n) (- (A000005 n) (A005361 n))) ;; Antti Karttunen, Nov 23 2017
Formula
a(1) = 0, a(p) = 1, a(pq) = 3, a(pq...z) = 2^k - 1, a(p^k) = 1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma - zeta(2)*zeta(3)/zeta(6) - 1), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 30 2025
Extensions
Name corrected by Amiram Eldar, Jan 30 2025
Comments