A183101 a(n) = sum of divisors of n that are not perfect powers.
0, 2, 3, 2, 5, 11, 7, 2, 3, 17, 11, 23, 13, 23, 23, 2, 17, 29, 19, 37, 31, 35, 23, 47, 5, 41, 3, 51, 29, 71, 31, 2, 47, 53, 47, 41, 37, 59, 55, 77, 41, 95, 43, 79, 68, 71, 47, 95, 7, 67, 71, 93, 53, 83, 71, 107, 79, 89, 59, 163, 61, 95, 94, 2, 83, 143, 67, 121, 95, 143, 71, 137, 73, 113, 98, 135, 95, 167, 79, 157, 3, 125, 83, 219, 107, 131, 119, 167, 89, 224, 111, 163, 127, 143, 119, 191, 97, 121, 146, 87
Offset: 1
Keywords
Examples
For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 2+3+6+12=23.
Links
Programs
-
Maple
N:= 1000: # to get a(1) to a(N) S:= {seq(seq(i^k, i=1..floor(N^(1/k))), k=2..ilog2(N))}: seq(convert(numtheory:-divisors(t) minus S,`+`), t=1..N); # Robert Israel, Oct 02 2014 -
Mathematica
Table[Total[DeleteCases[Divisors[n],?(GCD@@FactorInteger[#][[All,2]]>1&)]],{n,100}]-1 (* _Harvey P. Dale, May 30 2021 *)
-
PARI
a(n) = sumdiv(n, d, d*((d!=1) && !ispower(d))); \\ Michel Marcus, Oct 02 2014
Comments