A183102 a(n) = product of powerful divisors d of n.
1, 1, 1, 4, 1, 1, 1, 32, 9, 1, 1, 4, 1, 1, 1, 512, 1, 9, 1, 4, 1, 1, 1, 32, 25, 1, 243, 4, 1, 1, 1, 16384, 1, 1, 1, 1296, 1, 1, 1, 32, 1, 1, 1, 4, 9, 1, 1, 512, 49, 25, 1, 4, 1, 243, 1, 32, 1, 1, 1, 4, 1, 1, 9, 1048576, 1, 1, 1, 4, 1, 1, 1, 746496, 1
Offset: 1
Keywords
Examples
For n = 12, set of such divisors is {1, 4}; a(12) = 1*4 = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16385
Programs
-
Maple
isA001694 := proc(n) for p in ifactors(n)[2] do if op(2,p) = 1 then return false; end if; end do; return true; end proc: A183102 := proc(n) local a,d; a := 1 ; for d in numtheory[divisors](n) do if isA001694(d) then a := a*d; end if; end do; a ; end proc: seq(A183102(n),n=1..70) ; # R. J. Mathar, Jun 07 2011
-
Mathematica
powerfulQ[n_] := Min[FactorInteger[n][[All, 2]]] > 1; a[n_] := Times @@ Select[Divisors[n], powerfulQ]; Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Jun 01 2024 *)
-
PARI
A183102(n) = { my(m=1); fordiv(n, d, if(ispowerful(d), m *= d)); m; }; \\ Antti Karttunen, Oct 07 2017
Comments