A183113 Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; NEUTRAL ; BLUE] pre-colored puzzle.
0, 1, 3, 7, 21, 61, 179, 535, 1597, 4781, 14331, 42967, 128869, 386557, 1159587, 3478647, 10435757, 31306989, 93920555, 281761015, 845282069, 2535844733, 7607531923, 22822592343, 68467771805, 205403307437, 616209910235, 1848629712279, 5545889108805
Offset: 0
Keywords
References
- Uri Levy, "The Magnetic Tower of Hanoi", Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
Links
- 1. The Magnetic Tower of Hanoi, Uri Levy
- 2. Magnetic Towers of Hanoi and their Optimal Solutions, Uri Levy
- 3. Web applet to play The Magnetic Tower of Hanoi
- Index entries for linear recurrences with constant coefficients, signature (3,1,-1,-6).
Crossrefs
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi.
Programs
-
Mathematica
Join[{0},LinearRecurrence[{3,1,-1,-6},{1,3,7,21},40]] (* or *) CoefficientList[ Series[ x(1-2x)(1+x)^2/((1-3x)(1-x^2-2x^3)),{x,0,40}],x] (* Harvey P. Dale, May 11 2011 *)
Formula
Recurrence Relations (a(n)=P727(n) as in referenced paper):
P727(k) = P727(k-2) + 2*P727(k-3) + 4*3^(k-3) + 4*3^(k-4) ; k >= 4
Closed-Form Expression:
Define:
λ1 = [1+sqrt(26/27)]^(1/3) + [1-sqrt(26/27)]^(1/3)
λ2 = -0.5* λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
λ3 = -0.5* λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
AP = [(1/11)* λ2* λ3 - (3/11)*(λ2 + λ3) + (9/11)]/[( λ2 - λ1)*( λ3 - λ1)]
BP = [(1/11)* λ1* λ3 - (3/11)*(λ1 + λ3) + (9/11)]/[( λ1 - λ2)*( λ3 - λ2)]
CP = [(1/11)* λ1* λ2 - (3/11)*(λ1 + λ2) + (9/11)]/[( λ2 - λ3)*( λ1 - λ3)]
For any k > 0:
P727(n) = (8/11)*3^(n-1) + AP* λ1^n + BP* λ2^n + CP* λ3^n.
G.f.: x*(1-2*x)*(1+x)^2/((1-3*x)*(1-x^2-2*x^3)); a(n) = 3*a(n-1)+a(n-2)-a(n-3)-6*a(n-4) with n>4. - Bruno Berselli, Dec 29 2010
Extensions
More terms from Harvey P. Dale, May 11 2011
Comments