A183114 Magnetic Tower of Hanoi, total number of moves, optimally solving the [RED ; NEUTRAL ; BLUE] pre-colored puzzle.
0, 1, 4, 11, 32, 93, 272, 807, 2404, 7185, 21516, 64483, 193352, 579909, 1739496, 5218143, 15653900, 46960889, 140881444, 422642459, 1267924528, 3803769261, 11411301184, 34233893527, 102701665332, 308104972769, 924314883004, 2772944595283, 8318833704088, 24956500987925
Offset: 0
Keywords
References
- U. Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..2030
- U. Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- U. Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Web applet to play The Magnetic Tower of Hanoi [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-2,-5,6).
Crossrefs
A183113 is an "original" sequence describing the number of moves of disk number k, optimally solving the pre-colored puzzle at hand. The integer sequence listed above is the partial sums of the A183113 original sequence.
Programs
-
Magma
I:=[0,1,4,11,32]; [n le 5 select I[n] else 4*Self(n-1)-2*Self(n-2)-2*Self(n-3)-5*Self(n-4)+6*Self(n-5): n in [1..30]]; // Vincenzo Librandi, Dec 04 2018
-
Maple
seq(coeff(series(x*(2*x-1)*(1+x)^2/((x-1)*(3*x-1)*(2*x^3+x^2-1)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Dec 04 2018
-
Mathematica
LinearRecurrence[{4, -2, -2, -5, 6}, {0, 1, 4, 11, 32}, 30] (* Jean-François Alcover, Dec 04 2018 *) CoefficientList[Series[x (2 x - 1) (1 + x)^2 / ((x - 1) (3 x - 1) (2 x^3 + x^2 - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 04 2018 *)
Formula
G.f.: x*(2*x-1)*(1+x)^2 / ( (x-1)*(3*x-1)*(2*x^3+x^2-1) ).
Recurrence Relations (a(n)=S727(n) as in referenced paper):
a(N) = a(N-2) + 2*a(N-3) + 8*3^(N-3) + 2 ; N ≥ 3 ; S727(0) = 0
Closed-Form Expression:
Define:
λ1 = [1+sqrt(26/27)]^(1/3) + [1-sqrt(26/27)]^(1/3)
λ2 = -0.5* λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
λ3 = -0.5* λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
AS = [(7/11)* λ2* λ3 - (10/11)*(λ2 + λ3) + (19/11)]/[( λ2 - λ1)*( λ3 - λ1)]
BS = [(7/11)* λ1* λ3 - (10/11)*(λ1 + λ3) + (19/11)]/[( λ1 - λ2)*( λ3 - λ2)]
CS = [(7/11)* λ1* λ2 - (10/11)*(λ1 + λ2) + (19/11)]/[( λ2 - λ3)*( λ1 - λ3)]
For any N > 0:
a(N) = (4/11)*3^N + AS* λ1^N + BS* λ2^N + CS* λ3^N - 1
a(n) = 4*a(n-1)-2*a(n-2)-2*a(n-3)-5*a(n-4)+6*a(n-5). - Vincenzo Librandi, Dec 04 2018
Extensions
More terms from Jean-François Alcover, Dec 04 2018
Comments