cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A183128 G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k>=0} C(n+k-1,k)^(k^2+1)*x^k]*x^n/n ).

Original entry on oeis.org

1, 1, 2, 5, 131, 527019, 384803612051, 118132908813157848449, 7963186263790446068194034181927844, 116876153524994349756813783078174425848129593196964577
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2010

Keywords

Comments

Conjecture: this sequence consists entirely of integers.
Note that the following g.f. does NOT yield an integer series:
. exp( Sum_{n>=1} [Sum_{k>=0} C(n+k-1,k)^(k^2) * x^k] * x^n/n ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 131*x^4 + 527019*x^5 +...
The logarithm of the g.f. begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 503*x^4/4 + 2634426*x^5/5 + 2308818509412*x^6/6 + 826930358998475963946*x^7/7 +...
and equals the sum of the series:
log(A(x)) = (1 + 1*x + 1*x^2 + 1*x^3 + 1*x^4 + 1*x^5 +...)*x
+ (1 + 2^2*x + 3^5*x^2 + 4^10*x^3 + 5^17*x^4 + 6^26*x^5 +...)*x^2/2
+ (1 + 3^2*x + 6^5*x^2 + 10^10*x^3 + 15^17*x^4 + 21^26*x^5 +...)*x^3/3
+ (1 + 4^2*x + 10^5*x^2 + 20^10*x^3 + 35^17*x^4 + 56^26*x^5 +...)*x^4/4
+ (1 + 5^2*x + 15^5*x^2 + 35^10*x^3 + 70^17*x^4 + 126^26*x^5 +...)*x^5/5
+ (1 + 6^2*x + 21^5*x^2 + 56^10*x^3 + 126^17*x^4 + 252^26*x^5 +...)*x^6/6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(m+k-1,k)^(k^2+1)*x^k)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, a(n-k)*sum(j=0, k-1, k*binomial(k-1, j)^(j^2+1)/(k-j))))}

Formula

a(n) = (1/n)*Sum_{k=1..n} L(k)*a(n-k) for n>0 with a(0) = 1, where L(n) = Sum_{k=0..n-1} n*C(n-1,k)^(k^2+1)/(n-k).

A183130 a(n) = Sum_{k=0..n-1} n*C(n-1,k)^(k^2+k)/(n-k).

Original entry on oeis.org

1, 3, 10, 1475, 42020826, 288102296421912, 1549651963209151973674266, 12376315346794076107386866097703962244275, 18103334357369719745485305195095336496837630847237574224638034
Offset: 1

Views

Author

Paul D. Hanna, Dec 26 2010

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 1475*x^4/4 + 42020826*x^5/5 +...
The l.g.f. equals the series:
L(x) = (1 + 1*x + 1*x^2 + 1*x^3 + 1*x^4 + 1*x^5 +...)*x
+ (1 + 2^2*x + 3^6*x^2 + 4^12*x^3 + 5^20*x^4 + 6^30*x^5 +...)*x^2/2
+ (1 + 3^2*x + 6^6*x^2 + 10^12*x^3 + 15^20*x^4 + 21^30*x^5 +...)*x^3/3
+ (1 + 4^2*x + 10^6*x^2 + 20^12*x^3 + 35^20*x^4 + 56^30*x^5 +...)*x^4/4
+ (1 + 5^2*x + 15^6*x^2 + 35^12*x^3 + 70^20*x^4 + 126^30*x^5 +...)*x^5/5
+ (1 + 6^2*x + 21^6*x^2 + 56^12*x^3 + 126^20*x^4 + 252^30*x^5 +...)*x^6/6 +...
Exponentiation yields the g.f. of A183129:
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 374*x^4 + 8404542*x^5 + 48017057808567*x^6 + 221378851935038776738734*x^7 +...+ A183129(n)*x^n +...
		

Crossrefs

Cf. A183129.

Programs

  • Mathematica
    Table[Sum[(n*Binomial[n-1,k]^(k^2+k))/(n-k),{k,0,n-1}],{n,10}] (* Harvey P. Dale, Sep 22 2012 *)
  • PARI
    {a(n)=sum(k=0, n-1, n*binomial(n-1, k)^(k^2+k)/(n-k))}

Formula

Equals the logarithmic derivative of A183129.
a(n) = Sum_{k=0..n-1} C(n,k)*C(n-1,k)^(k^2+k-1).
Showing 1-2 of 2 results.