cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183133 Number of steps to compute the n-th prime in PRIMEGAME using Kilminster's Fractran program with only nine fractions.

Original entry on oeis.org

10, 46, 196, 500, 1428, 2488, 4588, 6840, 10546, 17118, 23064, 33332, 44472, 55848, 70330, 90836, 115136, 137912, 168802, 201000, 233542, 276680, 320332, 373198, 439722, 503810, 568334, 640092, 712314, 792186, 917090, 1023878, 1146632, 1263818, 1419298
Offset: 1

Views

Author

Alois P. Heinz, Dec 26 2010

Keywords

References

  • D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          local l,p,m,k;
          l:= [3/11, 847/45, 143/6, 7/3, 10/91, 3/7, 36/325, 1/2, 36/5]:
          if n=1 then b(0):= 10; a(0):= 0
                 else a(n-1)
          fi;
          p:= b(n-1);
          for m do
             for k while not type(p*l[k], integer)
             do od; p:= p*l[k];
             if 10^ilog10(p)=p then break fi
          od:
          b(n):= p;
          m + a(n-1)
        end:
    seq(a(n), n=1..20);
  • Mathematica
    a[n_] := a[n] = Module[{l, p, m, k},
         l = {3/11, 847/45, 143/6, 7/3, 10/91, 3/7, 36/325, 1/2, 36/5};
         If[n == 1, b[0] = 10; a[0] = 0, a[n - 1]]; p = b[n - 1];
         For[m = 1, True, m++,
              For[k = 1, !IntegerQ[p*l[[k]]], k++];
              p = p*l[[k]];If[10^(Length@IntegerDigits[p]-1) == p, Break[]]];
         b[n] = p; m + a[n - 1]];
    Array[a, 20] (* Jean-François Alcover, Apr 02 2021, after Alois P. Heinz *)