cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A183132 Successive integers produced by Conway's PRIMEGAME using Kilminster's Fractran program with only nine fractions.

Original entry on oeis.org

10, 5, 36, 858, 234, 5577, 1521, 3549, 8281, 910, 100, 50, 25, 180, 3388, 924, 252, 6006, 1638, 39039, 10647, 24843, 57967, 6370, 700, 300, 7150, 1950, 46475, 12675, 29575, 3250, 360, 6776, 1848, 504, 12012, 3276, 78078, 21294, 507507, 138411, 322959, 753571
Offset: 1

Views

Author

Alois P. Heinz, Dec 26 2010

Keywords

Comments

The exponents of exact powers of 10 in this sequence are 1, followed by the successive primes (A008578).

References

  • D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.

Crossrefs

Programs

  • Maple
    l:= [3/11, 847/45, 143/6, 7/3, 10/91, 3/7, 36/325, 1/2, 36/5]:
    a:= proc(n) option remember;
          global l;
          local p, k;
          if n=1 then 10
                 else p:= a(n-1);
                      for k while not type(p*l[k], integer)
                      do od; p*l[k]
          fi
        end:
    seq(a(n), n=1..50);
  • Mathematica
    l = {3/11, 847/45, 143/6, 7/3, 10/91, 3/7, 36/325, 1/2, 36/5};
    a[n_] := a[n] = Module[{p, k}, If[n == 1, 10, p = a[n - 1]; For[k = 1, !IntegerQ[p*l[[k]]], k++]; p*l[[k]]]];
    Array[a, 50] (* Jean-François Alcover, May 28 2018, from Maple *)
  • Python
    from fractions import Fraction
    nums = [ 3, 847, 143, 7, 10, 3,  36, 1, 36]
    dens = [11,  45,   6, 3, 91, 7, 325, 2,  5]
    PRIMEGAME = [Fraction(num, den) for num, den in zip(nums, dens)]
    def succ(n, program):
        for i in range(len(program)):
          if (n*program[i]).denominator == 1: return (n*program[i]).numerator
    def orbit(start, program, steps):
        orb = [start]
        for s in range(1, steps): orb.append(succ(orb[-1], program))
        return orb
    print(orbit(10, PRIMEGAME, steps=44)) # Michael S. Branicky, Oct 05 2021

A267572 Number of steps J. H. Conway's Fractran program needs to calculate the n-th prime.

Original entry on oeis.org

19, 50, 211, 577, 2083, 3469, 7361, 10395, 17915, 35249, 43188, 72392, 97236, 113324, 146556, 209098, 285307, 317925, 417234, 494939, 541264, 684114, 789130, 968524, 1249354, 1408123, 1500944, 1679217, 1781388, 1980305
Offset: 1

Views

Author

Ivan N. Ianakiev, Jan 17 2016

Keywords

Comments

The sieve consists of the fractions {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/14, 15/2, 55/1}.

Examples

			For n = 1, start with 2^n and find the first fraction (fraction1 = 15/2) where the product (2^n)*fraction1 is an integer (integer1 = 15). With integer1 repeat the above, i.e., find the first fraction (fraction2 = 55/1) where integer1*fraction2 is an integer (integer2 = 825). Repeat until a power of 2 is reached (2^2 in this case). The exponent of 2 is prime(1) and a(1) = 19 is the number of steps to reach it.
		

References

  • Dominic Olivastro, Ancient Puzzles, Bantam Books, 1993, pp. 20-21.

Crossrefs

Programs

  • Mathematica
    fracList = {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/14, 15/2, 55/1};
    stepCount[n_] := n * fracList[[First[Flatten[Position[n * fracList, First[Select[n * fracList, IntegerQ]]]]]]];
    A267572[n_] := Length[NestWhileList[stepCount[#] &, 2^n, stepCount[#] != 2^Prime[n] &]];
    Table[tempVar = A267572[n]; Print["a(", n,") = ", tempVar]; tempVar, {n, 30}]

A334722 Numerators of fractions in Kilminster's FracTran program for prime numbers, 10-fraction version.

Original entry on oeis.org

7, 99, 13, 39, 36, 10, 49, 7, 1, 91
Offset: 1

Views

Author

Alonso del Arte, May 09 2020

Keywords

Comments

Like Conway's PRIMEGAME (A202138/A203363), Kilminster's program delivers the prime numbers as exponents of powers of a base, but the base is 10 rather than 2.

References

  • John H. Conway and Tim Hsu, Some Very Interesting Sequences, in T. Shubin, D. F. Hayes, and G. Alexanderson (eds.), Expeditions in Mathematics, MAA Spectrum series, Washington, DC, 2011, chapter 6, pp. 75-86. See page 78.

Crossrefs

Kilminster also came up with a 9-fraction program. See A183132, A183133.
Showing 1-3 of 3 results.