cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A183143 [1/r]+[2/r]+...+[n/r], where r=sqrt(3) and []=floor.

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 13, 17, 22, 27, 33, 39, 46, 54, 62, 71, 80, 90, 100, 111, 123, 135, 148, 161, 175, 190, 205, 221, 237, 254, 271, 289, 308, 327, 347, 367, 388, 409, 431, 454, 477, 501, 525, 550, 575, 601, 628, 655, 683, 711, 740, 770, 800, 831
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2010

Keywords

Comments

A183143 + A183144 = A000217 (the triangular numbers).

Crossrefs

Programs

  • Maple
    A183143 := proc(n)
        local r;
        r := sqrt(3) ;
        add( floor(i/r),i=1..n) ;
    end proc:
    seq( A183143(n),n=1..200) ; # R. J. Mathar, Aug 28 2025
  • Mathematica
    Accumulate[Floor[Range[60]/Sqrt[3]]] (* Harvey P. Dale, Sep 10 2019 *)
  • PARI
    default(realprecision,100); r=sqrt(3); for(n=1,99,print1(sum(k=1,n,floor(k/r)),", "))

Formula

[1/r]+[2/r]+...+[n/r], where r=sqrt(3) and []=floor.

A183144 [1/s]+[2/s]+...+[n/s], where s=(3+sqrt(3))/2, []=floor.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 8, 11, 14, 18, 22, 27, 32, 37, 43, 49, 56, 63, 71, 79, 87, 96, 105, 115, 125, 135, 146, 157, 169, 181, 194, 207, 220, 234, 248, 263, 278, 294, 310, 326, 343, 360, 378, 396, 415, 434, 453, 473, 493, 514, 535, 556, 578, 600, 623
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2010

Keywords

Comments

A183143 + A183144 = A000217 (the triangular numbers).

Crossrefs

Programs

  • Mathematica
    With[{c=(3+Sqrt[3])/2},Accumulate[Floor[Range[60]/c]]] (* Harvey P. Dale, Mar 30 2018 *)

Formula

[1/s]+[2/s]+...+[n/s], where s=(3+sqrt(3))/2, []=floor.
Showing 1-2 of 2 results.