cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A183144 [1/s]+[2/s]+...+[n/s], where s=(3+sqrt(3))/2, []=floor.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 8, 11, 14, 18, 22, 27, 32, 37, 43, 49, 56, 63, 71, 79, 87, 96, 105, 115, 125, 135, 146, 157, 169, 181, 194, 207, 220, 234, 248, 263, 278, 294, 310, 326, 343, 360, 378, 396, 415, 434, 453, 473, 493, 514, 535, 556, 578, 600, 623
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2010

Keywords

Comments

A183143 + A183144 = A000217 (the triangular numbers).

Crossrefs

Programs

  • Mathematica
    With[{c=(3+Sqrt[3])/2},Accumulate[Floor[Range[60]/c]]] (* Harvey P. Dale, Mar 30 2018 *)

Formula

[1/s]+[2/s]+...+[n/s], where s=(3+sqrt(3))/2, []=floor.

A362873 a(n) is the number of points with integer coordinates that are inside an equilateral triangle inscribed in a circle of radius n, the location of the triangle in the Oxy coordinate plane is described in the comments.

Original entry on oeis.org

1, 4, 12, 17, 33, 42, 64, 77, 105, 122, 158, 177, 219, 242, 292, 319, 375, 406, 470, 503, 573, 610, 688, 729, 813, 856, 948, 995, 1093, 1144, 1248, 1303, 1415, 1472, 1592, 1653, 1779, 1844, 1976, 2045, 2185, 2256, 2402, 2477, 2631, 2710, 2870, 2951, 3119, 3204, 3378, 3467, 3649
Offset: 1

Views

Author

Nicolay Avilov, May 07 2023

Keywords

Comments

An equilateral triangle is located in the coordinate plane Oxy so that its center coincides with the origin O, one of the vertices lies on the Oy axis.

Examples

			a(3) = 4 + 2*4 = 12;
a(4) = 5 + 2*6 = 17.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(3n-2+Mod[n,2])/2+2Sum[Floor[(3n+Mod[n,2])/2-Sqrt[3]k],{k,Floor[Sqrt[3]n/2]}]; Array[a,53] (* Stefano Spezia, May 08 2023 *)

Formula

a(n) = (3*n - 2)/2 + 2*Sum_{k=1..floor(sqrt(3)*n/2)} floor(-sqrt(3)*k + 3*n/2) if n is even;
a(n) = (3*n - 1)/2 + 2*Sum_{k=1..floor(sqrt(3)*n/2)} floor(-sqrt(3)*k + (3*n + 1)/2) if n is odd.

A184977 a(n) = Sum_{k=1..n} floor(k*gamma) where gamma is Euler's constant (A001620).

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 13, 17, 22, 27, 33, 39, 46, 54, 62, 71, 80, 90, 100, 111, 123, 135, 148, 161, 175, 190, 205, 221, 237, 254, 271, 289, 308, 327, 347, 367, 388, 409, 431, 454, 477, 501, 525, 550, 575, 601, 628, 655, 683, 711, 740, 770, 800, 831, 862, 894, 926, 959, 993, 1027, 1062
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2011

Keywords

Comments

a(n) = A183143(n) for n = 1..96 where A183143(n) is the sequence floor(1/r) + floor(2/r) + ... + floor(n/r) and r = sqrt(3). It is interesting to note that a(n)/n^2 converges to gamma/2.
gamma = 0.57721566490153286060651209... (A002852)
1/sqrt(3) = 0.577350269189625764509148... (A020760)
Starts to differ from A183143 at a(97). - R. J. Mathar, Aug 28 2025

Crossrefs

Programs

  • Magma
    R:=RealField(100); [(&+[Floor(k*EulerGamma(R)): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Aug 27 2018
  • Maple
    with(numtheory):Digits:=500:s:=0:c:=evalf(gamma(0)):for n from 1 to 100 do:
      s:=s+floor(n*c):printf(`%d, `,s):od:
  • Mathematica
    Table[Sum[Floor[k*EulerGamma], {k, 1, n}], {n, 50}] (* G. C. Greubel, Jun 02 2017 *)
  • PARI
    a(n) = sum(k=1, n, floor(k*Euler)); \\ Michel Marcus, Apr 02 2017
    

Formula

Partial sums of A038128.

Extensions

Name edited by Jon E. Schoenfield, Apr 02 2017
Showing 1-3 of 3 results.