cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183155 The number of order-preserving partial isometries (of an n-chain) of fix zero (fix of alpha = 0). Equivalently, the number of order-preserving partial derangement isometries (of an n-chain).

Original entry on oeis.org

1, 1, 3, 9, 23, 53, 115, 241, 495, 1005, 2027, 4073, 8167, 16357, 32739, 65505, 131039, 262109, 524251, 1048537, 2097111, 4194261, 8388563, 16777169, 33554383, 67108813, 134217675, 268435401, 536870855, 1073741765
Offset: 0

Views

Author

Abdullahi Umar, Dec 28 2010

Keywords

Comments

a(n) is also the number of dominating sets in the (n+1)-path complement graph. - Eric W. Weisstein, Apr 11 2018

Examples

			a(3) = 9 because there are exactly 9 order-preserving partial derangement isometries (on a 3-chain) , namely: empty map; 1-->2; 1-->3; 2-->1; 2-->3; 3-->1; 3-->2; (1,2)-->(2,3); (2,3)-->(1,2) - the mappings are coordinate-wise.
		

Crossrefs

Cf. A000918 (first differences), A183154.

Programs

  • Mathematica
    Table[1 + 2^(1 + n) - 2 (1 + n), {n, 0, 20}] (* or *)
    LinearRecurrence[{4, -5, 2}, {1, 3, 9}, {0, 20}] (* or *)
    CoefficientList[Series[(-1 + 3 x - 4 x^2)/((-1 + x)^2 (-1 + 2 x)), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
  • PARI
    a(n) = 2^(n+1)-(2*n+1); \\ Altug Alkan, Apr 12 2018

Formula

a(n) = A183154(n,0).
a(n) = 2^(n+1) - (2*n+1).
a(0)=1; for n > 0, a(n) = 2*a(n-1) + 2*n - 3. - Vincenzo Librandi, Feb 05 2011
G.f.: (-1+3*x-4*x^2)/((2*x-1)*(x-1)^2). - R. J. Mathar, Feb 06 2011
From Elmo R. Oliveira, Mar 07 2025: (Start)
E.g.f.: exp(x)*(2*exp(x) - (1 + 2*x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). (End)