A183157 Triangle read by rows: T(n,k) is the number of partial isometries of an n-chain of height k (height of alpha = |Im(alpha)|).
1, 1, 1, 1, 4, 2, 1, 9, 10, 2, 1, 16, 28, 12, 2, 1, 25, 60, 40, 14, 2, 1, 36, 110, 100, 54, 16, 2, 1, 49, 182, 210, 154, 70, 18, 2, 1, 64, 280, 392, 364, 224, 88, 20, 2, 1, 81, 408, 672, 756, 588, 312, 108, 22, 2, 1, 100, 570, 1080, 1428, 1344, 900, 420, 130, 24, 2
Offset: 0
Examples
T (3,2) = 10 because there are exactly 10 partial isometries (on a 3-chain) of height 2, namely: (1,2)-->(1,2); (1,2)-->(2,1); (1,2)-->(2,3); (1,2)-->(3,2); (2,3)-->(1,2); (2,3)-->(2,1); (2,3)-->(2,3); (2,3)-->(3,2); (1,3)-->(1,3); (1,3)-->(3,1) - the mappings are coordinate-wise. The triangle starts 1; 1, 1; 1, 4, 2; 1, 9, 10, 2; 1, 16, 28, 12, 2; 1, 25, 60, 40, 14, 2; 1, 36, 110, 100, 54, 16, 2; 1, 49, 182, 210, 154, 70, 18, 2; 1, 64, 280, 392, 364, 224, 88, 20, 2; 1, 81, 408, 672, 756, 588, 312, 108, 22, 2; 1, 100, 570, 1080, 1428, 1344, 900, 420, 130, 24, 2;
Links
- R. Kehinde and A. Umar, On the semigroup of partial isometries of a finite chain, arXiv:1101.2558 [math.GR], 2011.
- Eric Weisstein's World of Mathematics, Bishop Graph
- Eric Weisstein's World of Mathematics, Clique Polynomial
Programs
-
Maple
A183157 := proc(n,k) if k =0 then 1; elif k = 1 then n^2 ; else 2*(2*n-k+1)*binomial(n,k)/(k+1) ; end if; end proc: # R. J. Mathar, Jan 06 2011
-
Mathematica
T[, 0] = 1; T[n, 1] := n^2; T[n_, k_] := 2*(2*n - k + 1)*Binomial[n, k] / (k + 1); Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)
Formula
T(n,0)=1, T(n,1) = n^2 and T(n,k)=2*(2*n-k+1)*binomial(n,k)/(k+1), k > 1.
Comments