A183168 Number of partitions of n^2 into three distinct primes.
0, 0, 0, 1, 2, 3, 8, 2, 17, 3, 41, 7, 61, 6, 69, 8, 152, 11, 216, 6, 204, 10, 383, 16, 464, 14, 447, 14, 791, 18, 978, 18, 822, 18, 1302, 25, 1684, 27, 1387, 24, 2347, 28, 2726, 27, 2012, 34, 3620, 31, 4005, 32, 3218, 44, 5274, 44, 5461, 36, 4538, 43, 7429, 58
Offset: 1
Keywords
Examples
a(4)=1 because 16=2+3+11, a(6)=3 because 36=2+3+31=2+5+29=2+11+13.
Links
- Zak Seidov, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Haskell
a183168 n = z (drop (fromInteger (mod n 2)) a000040_list) (n ^ 2) 3 where z _ m 1 = if m <= 0 then 0 else a010051 m z (p:ps) m c = if m <= 2*p then 0 else z ps (m - p) (c - 1) + z ps m c -- Reinhard Zumkeller, Aug 28 2012
-
Mathematica
Table[Count[Union/@IntegerPartitions[n^2,{3}],?(Length[#]==3&&AllTrue[ #, PrimeQ]&)],{n,60}] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale, May 02 2018 *)
-
PARI
a(n)=my(s);n*=n;forprime(p=n\3,n-4,forprime(q=(n-p)\2+1,min(n-p,p-1),if(isprime(n-p-q),s++)));s \\ Charles R Greathouse IV, Aug 27 2012
Comments