cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077790 Numbers k such that (10^k - 1)/3 + 4*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

3, 7, 15, 23, 27, 35, 59, 63, 67, 155, 1867, 3111, 23517, 235415
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
a(14) > 200000. - Robert Price, Dec 29 2016

Examples

			23 is a term because (10^23 - 1)/3 + 4*10^11 = 33333333333733333333333.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(10^n + 12*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 23600, 2}] (* Robert G. Wilson v, Dec 16 2005 *)

Formula

a(n) = 2*A183176(n) + 1.

Extensions

Name corrected by Jon E. Schoenfield, Oct 31 2018
a(14) from Robert Price, Oct 30 2023

A332137 a(n) = (10^(2n+1)-1)/3 + 4*10^n.

Original entry on oeis.org

7, 373, 33733, 3337333, 333373333, 33333733333, 3333337333333, 333333373333333, 33333333733333333, 3333333337333333333, 333333333373333333333, 33333333333733333333333, 3333333333337333333333333, 333333333333373333333333333, 33333333333333733333333333333, 3333333333333337333333333333333
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A183176 = {1, 3, 7, 11, 13, 17, 29, 31, ...} for the indices of primes.

Crossrefs

Cf. (A077790-1)/2 = A183176: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332127 .. A332197 (variants with different repeated digit 2, ..., 9).
Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332137 := n -> (10^(2*n+1)-1)/3+4*10^n;
  • Mathematica
    Array[ (10^(2 # + 1)-1)/3 + 4*10^# &, 15, 0]
  • PARI
    apply( {A332137(n)=10^(n*2+1)\3+4*10^n}, [0..15])
    
  • Python
    def A332137(n): return 10**(n*2+1)//3+4*10**n

Formula

a(n) = 3*A138148(n) + 7*10^n = A002277(2n+1) + 4*10^n.
G.f.: (7 - 404*x + 100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
Showing 1-2 of 2 results.