cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183209 Tree generated by floor(3n/2): a(1) = 1, a(2n) = (3*a(n))-1, a(2n+1) = floor((3*a(n+1))/2).

Original entry on oeis.org

1, 2, 3, 5, 4, 8, 7, 14, 6, 11, 12, 23, 10, 20, 21, 41, 9, 17, 16, 32, 18, 35, 34, 68, 15, 29, 30, 59, 31, 62, 61, 122, 13, 26, 25, 50, 24, 47, 48, 95, 27, 53, 52, 104, 51, 101, 102, 203, 22, 44, 43, 86, 45, 89, 88, 176, 46, 92, 93, 185, 91, 182, 183, 365, 19, 38, 39, 77, 37
Offset: 1

Views

Author

Clark Kimberling, Dec 30 2010

Keywords

Comments

A permutation of the positive integers. See the comment at A183079. Leftmost branch of tree is essentially A061418. Rightmost: A007051.

Examples

			First levels of the tree:
                      1
                      2
            3                   5
          4   8               7   14
		

Crossrefs

Similar permutations: A048673, A254103.
Inverse permutation: A259431.

Programs

  • Haskell
    import Data.List (transpose)
    a183209 n k = a183209_tabf !! (n-1) !! (k-1)
    a183209_row n = a183209_tabf !! (n-1)
    a183209_tabf = [1] : iterate (\xs -> concat $
       transpose [map a032766 xs, map (a016789 . subtract 1) xs]) [2]
    a183209_list = concat a183209_tabf
    -- Reinhard Zumkeller, Jun 27 2015
    
  • Maple
    f:= proc(n) option remember;
      if n::even then 3*procname(n/2)-1
      else floor(3*procname((n+1)/2)/2)
      fi
    end proc:
    f(1):= 1:
    seq(f(n), n=1..100); # Robert Israel, Jan 26 2015
  • Mathematica
    a[1]=1; a[n_] := a[n] = If[EvenQ[n], 3a[n/2]-1, Floor[3a[(n+1)/2]/2] ]; Array[a, 100] (* Jean-François Alcover, Feb 02 2018 *)
  • Python
    def a(n):
        if n==1: return 1
        if n%2==0: return 3*a(n//2) - 1
        else: return (3*a((n - 1)//2 + 1))//2
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017

Formula

Let L(n)=floor(3n/2).
Let U(n)=3n-1. U is the complement of L.
The tree-array T(n,k) is then given by rows:
T(0,0)=1; T(1,0)=2;
T(n,2j)=L(T(n-1),j);
T(n,2j+1)=U(T(n-1),j);
for j=0,1,...,2^(n-1)-1, n>=2.
From Antti Karttunen, Jan 26 2015: (Start)
a(1) = 1, a(2n) = (3*a(n))-1, a(2n+1) = A032766(a(n+1)) = floor((3*a(n+1))/2).
Other identities:
a(2^n) = A007051(n) for all n >= 0. [A property shared with A048673 and A254103.]
(End)

Extensions

Formula to the name-field added by Antti Karttunen, Jan 26 2015