cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A183230 G.f.: Sum_{n>=0} a(n)*x^n/n!^3 = Product_{n>=1} (1 + x^n/n!^3).

Original entry on oeis.org

1, 1, 1, 28, 65, 1126, 219592, 1210105, 26891713, 2147043538, 2019029825126, 21746314187335, 770200602942872, 54021095931416459, 16833586753169817373, 54446959965626243089903, 1039787297277083116535233
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2/2!^3 + 28*x^3/3!^3 + 65*x^4/4!^3 +...
A(x) = (1 + x)*(1 + x^2/2!^3)*(1 + x^3/3!^3)*(1 + x^4/4!^3)*...
		

Crossrefs

Programs

  • PARI
    {a(n)=n!^3*polcoeff(prod(k=1, n, 1+x^k/k!^3 +x*O(x^n)), n)}

A336294 a(n) = (n!)^n * [x^n] Product_{k>=1} (1 + x^k/(k!)^n).

Original entry on oeis.org

1, 1, 1, 28, 257, 103126, 46667437282, 140776183474585, 38414859209967468545, 8006615289848673023223926602, 100856872226698664486645150126408916015626, 7425498079138047573566961707334890995112470771975
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 16 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^n SeriesCoefficient[Product[(1 + x^k/(k!)^n), {k, 1, n}], {x, 0, n}], {n, 0, 11}]

A346314 Sum_{n>=0} a(n) * x^n / (n!)^2 = Product_{n>=1} (1 - x^n / (n!)^2).

Original entry on oeis.org

1, -1, -1, 8, 15, 124, -3340, -9311, -102641, -1880812, 150047424, 692058289, 8916106452, 167039809897, 7435628931289, -1381243302601067, -9407162843960561, -165954439670564988, -3103870029424074136, -123659189880256295879, -10671656695397289496160
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 - x^k/(k!)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[(Binomial[n, k] k!)^2 k Sum[1/(d ((k/d)!)^(2 d)), {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} (binomial(n,k) * k!)^2 * k * ( Sum_{d|k} 1 / (d * ((k/d)!)^(2*d)) ) * a(n-k).

A346315 Sum_{n>=0} a(n) * x^n / (n!)^2 = Product_{n>=1} 1 / (1 + (-x)^n / (n!)^2).

Original entry on oeis.org

1, 1, 3, 28, 483, 11976, 423660, 20801775, 1337182819, 108259612048, 10814058518328, 1308659192928495, 188498906179378476, 31855351764833425895, 6243218508505581436249, 1404734813476218805338303, 359618310105650201828166499, 103929494668760259335327432160
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 17; CoefficientList[Series[Product[1/(1 + (-x)^k/(k!)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[(-1)^k (Binomial[n, k] k!)^2 k Sum[(-1)^d/(d ((k/d)!)^(2 d)), {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} (-1)^k * (binomial(n,k) * k!)^2 * k * ( Sum_{d|k} (-1)^d / (d * ((k/d)!)^(2*d)) ) * a(n-k).
Showing 1-4 of 4 results.