cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183241 G.f.: A(x) = exp( Sum_{n>=1} A183240(n)*x^n/n ) where A183240 is the sums of the squares of multinomial coefficients.

Original entry on oeis.org

1, 1, 3, 18, 213, 4128, 122638, 5096305, 284192429, 20375905738, 1829560187405, 200829815300994, 26471873341135571, 4124649654997542447, 750006492020987263020, 157382918361825037892997
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2011

Keywords

Comments

Conjectured to consist entirely of integers.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 213*x^4 + 4128*x^5 +...
log(A(x)) = x + 5*x^2/2 + 46*x^3/3 + 773*x^4/4 + 19426*x^5/5 + 708062*x^6/6 + 34740805*x^7/7 +...+ A183240(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(intformal(1/x*(-1+serlaplace(serlaplace(1/prod(k=1,n+1,1-x^k/k!^2+O(x^(n+2)))))))),n)}

Formula

a(n) = (1/n)*Sum_{k=1..n} A183240(k)*a(n-k) for n>0 with a(0)=1.
a(n) ~ c * n! * (n-1)!, where c = Product_{k>=2} 1/(1-1/(k!)^2) = 1.37391178018464563291... . - Vaclav Kotesovec, Feb 19 2015