cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A183240 Sums of the squares of multinomial coefficients.

Original entry on oeis.org

1, 1, 5, 46, 773, 19426, 708062, 34740805, 2230260741, 180713279386, 18085215373130, 2188499311357525, 315204533416762046, 53270712928769375885, 10441561861586014363349, 2349364090881443819316871, 601444438364480313663234821, 173817677082622796179263021770
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2011

Keywords

Comments

Equals sums of the squares of terms in rows of the triangle of multinomial coefficients (A036038).
Ignoring initial term, equals the logarithmic derivative of A183241; A183241 is conjectured to consist entirely of integers.
More generally, let {M(n,k), n>=0} be the sums of the k-th powers of the multinomial coefficients where k>=0 (see table A183610), then:
Sum_{n>=0} M(n,k)*x^n/n!^k = Product_{n>=1} 1/(1-x^n/n!^k).

Examples

			G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 46*x^3/3!^2 + 773*x^4/4!^2 +...
A(x) = 1/((1-x)*(1-x^2/2!^2)*(1-x^3/3!^2)*(1-x^4/4!^2)*...).
...
After the initial term a(0)=1, the next several terms are
a(1) = 1^2 = 1,
a(2) = 1^2 + 2^2 = 5,
a(3) = 1^2 + 3^2 + 6^2 = 46,
a(4) = 1^2 + 4^2 + 6^2 + 12^2 + 24^2 = 773,
a(5) = 1^2 + 5^2 + 10^2 + 20^2 + 30^2 + 60^2 + 120^2 = 19426,
and continue with the sums of squares of the terms in triangle A036038.
		

Crossrefs

Cf. A183610 (table of sums of powers of multinomial coefficients).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n-i, min(n-i, i))/i!^2+b(n, i-1))
        end:
    a:= n-> n!^2*b(n$2):
    seq(a(n), n=0..21);  # Alois P. Heinz, Sep 11 2019
  • Mathematica
    t=Table[Apply[Multinomial, Reverse[Sort[IntegerPartitions[i], Length[#1] > Length[#2] &]], {1}], {i, 30}]^2; Plus@@@t (* From Tony D. Noe *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1,
         b[n - i, Min[n - i, i]]/i!^2 + b[n, i - 1]];
    a[n_] := n!^2 b[n, n];
    a /@ Range[0, 21] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
  • PARI
    {a(n)=n!^2*polcoeff(1/prod(k=1,n,1-x^k/k!^2 +x*O(x^n)),n)}

Formula

G.f.: Sum_{n>=0} a(n)*x^n/n!^2 = Product_{n>=1} 1/(1-x^n/n!^2).
a(n) ~ c * (n!)^2, where c = Product_{k>=2} 1/(1-1/(k!)^2) = 1.37391178018464563291052028168404977854977270679629932106310942272080844... . - Vaclav Kotesovec, Feb 19 2015

Extensions

Terms following a(7) computed by T. D. Noe.

A183239 G.f.: exp( Sum_{n>=1} A005651(n)*x^n/n ), where A005651 gives the sums of multinomial coefficients.

Original entry on oeis.org

1, 1, 2, 5, 17, 69, 352, 2077, 14505, 114354, 1023839, 10130051, 110878314, 1320375213, 17086334702, 237832320231, 3552995476517, 56590659564489, 958653346775294, 17192978984630744, 325681548343314833, 6494280460641306608
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 17*x^4 + 69*x^5 + 352*x^6 +...
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 47*x^4/4 + 246*x^5/5 + 1602*x^6/6 + 11481*x^7/7 + 95503*x^8/8 +...+ A005651(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(intformal(1/x*(-1+serlaplace(1/prod(k=1,n+1,1-x^k/k!+O(x^(n+2))))))),n)}

Formula

a(n) ~ c * (n-1)!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264... . - Vaclav Kotesovec, Feb 19 2015

A182963 G.f.: A(x) = exp( Sum_{n>=1} A183235(n)*x^n/n ) where A183235 is the sums of the cubes of multinomial coefficients.

Original entry on oeis.org

1, 1, 5, 86, 4052, 400401, 71827456, 21068995258, 9429303819612, 6105894632883407, 5493030296624140330, 6644655430011095138676, 10523095865317003368417750, 21337870239129956669159151372
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2011

Keywords

Comments

Conjectured to consist entirely of integers.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 86*x^3 + 4052*x^4 + 400401*x^5 +...
log(A(x)) = x + 9*x^2/2 + 244*x^3/3 + 15833*x^4/4 + 1980126*x^5/5 + 428447592*x^6/6 + 146966837193*x^7/7 +...+ A183235(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(intformal(1/x*(-1+serlaplace(serlaplace(serlaplace(1/prod(k=1, n+1, 1-x^k/k!^3+O(x^(n+2))))))))), n)}

Formula

a(n) = (1/n)*Sum_{k=1..n} A183235(k)*a(n-k) for n>0 with a(0)=1.

A215911 G.f.: exp( Sum_{n>=1} A215910(n)*x^n/n ), where A215910(n) equals the sum of the n-th power of multinomial coefficients in row n of triangle A036038.

Original entry on oeis.org

1, 1, 3, 84, 88602, 5137769389, 23588076629522583, 11893878960703225919597767, 876545054865944028047877165082786426, 12147135901759930712215268630715086378214795245696, 39632791164678725520866813137932593902239710762044280903318659253
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 84*x^3 + 88602*x^4 + 5137769389*x^5 +...
such that the logarithm of the g.f. begins:
log(A(x)) = x + 5*x^2/2 + 244*x^3/3 + 354065*x^4/4 + 25688403126*x^5/5 + 141528428949437282*x^6/6 +...+ A215910(n)*x^n/n +...
where the coefficients A215910(n) begin:
A215910(1) = 1^1 = 1;
A215910(2) = 1^2 + 2^2 = 5;
A215910(3) = 1^3 + 3^3 + 6^3 = 244;
A215910(4) = 1^4 + 4^4 + 6^4 + 12^4 + 24^4 = 354065;
A215910(5) = 1^5 + 5^5 + 10^5 + 20^5 + 30^5 + 60^5 + 120^5 = 25688403126; ...
and equal the sums of the n-th power of multinomial coefficients in row n of triangle A036038.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=sum(m=1,n,m!^m*polcoeff(1/prod(k=1, n, 1-x^k/k!^m +x*O(x^m)), m)*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) ~ (n!)^n / n. - Vaclav Kotesovec, Feb 19 2015
a(n) ~ 2^(n/2) * Pi^(n/2) * n^(n*(2*n+1)/2 - 1) / exp(n^2 - 1/12). - Vaclav Kotesovec, Feb 19 2015
Showing 1-4 of 4 results.