A183558 Number of partitions of n containing a clique of size 1.
0, 1, 1, 2, 3, 6, 7, 13, 16, 25, 33, 49, 61, 90, 113, 156, 198, 269, 334, 448, 556, 726, 902, 1163, 1428, 1827, 2237, 2817, 3443, 4302, 5219, 6478, 7833, 9632, 11616, 14197, 17031, 20712, 24769, 29925, 35688, 42920, 50980, 61059, 72318, 86206, 101837, 120941
Offset: 0
Keywords
Examples
a(5) = 6, because 6 partitions of 5 contain (at least) one clique of size 1: [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5]. From _Gus Wiseman_, Apr 19 2019: (Start) The a(1) = 1 through a(8) = 16 partitions are the following. The Heinz numbers of these partitions are given by A052485 (weak numbers). (1) (2) (3) (4) (5) (6) (7) (8) (21) (31) (32) (42) (43) (53) (211) (41) (51) (52) (62) (221) (321) (61) (71) (311) (411) (322) (332) (2111) (3111) (331) (422) (21111) (421) (431) (511) (521) (2221) (611) (3211) (3221) (4111) (4211) (31111) (5111) (211111) (32111) (41111) (311111) (2111111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->`if`(j=1, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..50);
-
Mathematica
max = 50; f = (1 - Product[1 - x^j + x^(2*j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; CoefficientList[s, x] (* Jean-François Alcover, Oct 01 2014. Edited by Gus Wiseman, Apr 19 2019 *)
Formula
G.f.: (1-Product_{j>0} (1-x^(j)+x^(2*j))) / (Product_{j>0} (1-x^j)).
From Vaclav Kotesovec, Nov 15 2016: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). (End)
Extensions
a(0)=0 prepended by Gus Wiseman, Apr 19 2019
Comments