A183567 Number of partitions of n containing a clique of size 10.
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 13, 15, 22, 26, 37, 45, 61, 74, 99, 120, 157, 192, 247, 299, 381, 462, 580, 703, 874, 1055, 1303, 1569, 1921, 2309, 2808, 3363, 4070, 4859, 5848, 6964, 8342, 9903, 11817, 13988, 16623, 19626, 23240, 27363, 32297
Offset: 10
Keywords
Examples
a(14) = 2, because 2 partitions of 14 contain (at least) one clique of size 10: [1,1,1,1,1,1,1,1,1,1,2,2], [1,1,1,1,1,1,1,1,1,1,4].
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->`if`(j=10, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> (l-> l[2])(b(n, n)): seq(a(n), n=10..60);
-
Mathematica
max = 60; f = (1 - Product[1 - x^(10j) + x^(11j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 10] (* Jean-François Alcover, Oct 01 2014 *) Table[Length[Select[IntegerPartitions[n],MemberQ[Length/@Split[#],10]&]],{n,10,60}] (* Harvey P. Dale, Oct 02 2021 *)
Formula
G.f.: (1-Product_{j>0} (1-x^(10*j)+x^(11*j))) / (Product_{j>0} (1-x^j)).
Comments