cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183610 Rectangular table where T(n,k) is the sum of the n-th powers of the k-th row of multinomial coefficients in triangle A036038 for n>=0, k>=0, as read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 10, 5, 1, 1, 9, 46, 47, 7, 1, 1, 17, 244, 773, 246, 11, 1, 1, 33, 1378, 15833, 19426, 1602, 15, 1, 1, 65, 8020, 354065, 1980126, 708062, 11481, 22, 1, 1, 129, 47386, 8220257, 221300626, 428447592, 34740805, 95503, 30
Offset: 0

Views

Author

Paul D. Hanna, Aug 11 2012

Keywords

Examples

			The table begins:
n=0: [1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, ...];
n=1: [1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, ...];
n=2: [1, 1, 5, 46, 773, 19426, 708062, 34740805, 2230260741, ...];
n=3: [1, 1, 9, 244, 15833, 1980126, 428447592, 146966837193, ...];
n=4: [1, 1, 17, 1378, 354065, 221300626, 286871431922, ...];
n=5: [1, 1, 33, 8020, 8220257, 25688403126, 199758931567152, ...];
n=6: [1, 1, 65, 47386, 194139713, 3033434015626, 141528428949437282, ...];
n=7: [1, 1, 129, 282124, 4622599553, 361140600078126, ...];
n=8: [1, 1, 257, 1686178, 110507041025, 43166813000390626, ...];
n=9: [1, 1, 513, 10097380, 2646977660417, 5169878244001953126, ...];
n=10:[1, 1, 1025, 60525226, 63465359844353, 619778904740009765626, ...];
...
The sums of the n-th power of terms in row k of triangle A036038 begin:
T(n,1) = 1^n,
T(n,2) = 1^n + 2^n,
T(n,3) = 1^n + 3^n + 6^n,
T(n,4) = 1^n + 4^n + 6^n + 12^n + 24^n,
T(n,5) = 1^n + 5^n + 10^n + 20^n + 30^n + 60^n + 120^n,
T(n,6) = 1^n + 6^n + 15^n + 20^n + 30^n + 60^n + 90^n + 120^n + 180^n + 360^n + 720^n, ...
Note that row n=0 forms the partition numbers A000041.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
          b(n-i, min(n-i, i), k)/i!^k+b(n, i-1, k))
        end:
    A:= (n, k)-> k!^n*b(k$2, n):
    seq(seq(A(d-k, k), k=0..d), d=0..10);  # Alois P. Heinz, Sep 11 2019
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, 1, b[n-i, Min[n-i, i], k]/i!^k + b[n, i-1, k]];
    A[n_, k_] := k!^n b[k, k, n];
    Table[Table[A[d-k, k], {k, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
  • PARI
    {T(n,k)=k!^n*polcoeff(1/prod(m=1, k, 1-x^m/m!^n +x*O(x^k)), k)}
    for(n=0,10,for(k=0,8,print1(T(n,k),", "));print(""))

Formula

G.f. of row n: Sum_{k>=0} T(n,k)*x^k/k!^n = Product_{j>=1} 1/(1 - x^j/j!^n).