A183610 Rectangular table where T(n,k) is the sum of the n-th powers of the k-th row of multinomial coefficients in triangle A036038 for n>=0, k>=0, as read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 10, 5, 1, 1, 9, 46, 47, 7, 1, 1, 17, 244, 773, 246, 11, 1, 1, 33, 1378, 15833, 19426, 1602, 15, 1, 1, 65, 8020, 354065, 1980126, 708062, 11481, 22, 1, 1, 129, 47386, 8220257, 221300626, 428447592, 34740805, 95503, 30
Offset: 0
Examples
The table begins: n=0: [1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, ...]; n=1: [1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, ...]; n=2: [1, 1, 5, 46, 773, 19426, 708062, 34740805, 2230260741, ...]; n=3: [1, 1, 9, 244, 15833, 1980126, 428447592, 146966837193, ...]; n=4: [1, 1, 17, 1378, 354065, 221300626, 286871431922, ...]; n=5: [1, 1, 33, 8020, 8220257, 25688403126, 199758931567152, ...]; n=6: [1, 1, 65, 47386, 194139713, 3033434015626, 141528428949437282, ...]; n=7: [1, 1, 129, 282124, 4622599553, 361140600078126, ...]; n=8: [1, 1, 257, 1686178, 110507041025, 43166813000390626, ...]; n=9: [1, 1, 513, 10097380, 2646977660417, 5169878244001953126, ...]; n=10:[1, 1, 1025, 60525226, 63465359844353, 619778904740009765626, ...]; ... The sums of the n-th power of terms in row k of triangle A036038 begin: T(n,1) = 1^n, T(n,2) = 1^n + 2^n, T(n,3) = 1^n + 3^n + 6^n, T(n,4) = 1^n + 4^n + 6^n + 12^n + 24^n, T(n,5) = 1^n + 5^n + 10^n + 20^n + 30^n + 60^n + 120^n, T(n,6) = 1^n + 6^n + 15^n + 20^n + 30^n + 60^n + 90^n + 120^n + 180^n + 360^n + 720^n, ... Note that row n=0 forms the partition numbers A000041.
Links
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1, b(n-i, min(n-i, i), k)/i!^k+b(n, i-1, k)) end: A:= (n, k)-> k!^n*b(k$2, n): seq(seq(A(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, Sep 11 2019
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, 1, b[n-i, Min[n-i, i], k]/i!^k + b[n, i-1, k]]; A[n_, k_] := k!^n b[k, k, n]; Table[Table[A[d-k, k], {k, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
-
PARI
{T(n,k)=k!^n*polcoeff(1/prod(m=1, k, 1-x^m/m!^n +x*O(x^k)), k)} for(n=0,10,for(k=0,8,print1(T(n,k),", "));print(""))
Formula
G.f. of row n: Sum_{k>=0} T(n,k)*x^k/k!^n = Product_{j>=1} 1/(1 - x^j/j!^n).