cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A183712 1/20 of the number of (n+1) X 3 0..4 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease.

Original entry on oeis.org

5, 17, 54, 174, 559, 1797, 5776, 18566, 59677, 191821, 616574, 1981866, 6370351, 20476345, 65817520, 211558554, 680016837, 2185791545, 7025832918, 22583273462, 72589861759, 233327025821, 749987665760, 2410700161342, 7748761123965, 24906995867477
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 2 of A183719. [Corrected by M. F. Hasler, Oct 07 2014]
This sequence counts closed walks of length (n+2) at the vertex of a triangle, to which a loop has been added to one of the remaining vertices and two loops has been added to the third vertex. - David Neil McGrath, Sep 04 2014
From Greg Dresden, Mar 02 2025: (Start)
a(n) is the number of ways to tile, with squares and dominoes, a 2 X n board with two extra spaces at the end. Here is the board for n=3:
|||_|
|||_|||,
and here is one of the a(3)=54 possible tilings of this board:
|_| |_
|||_|_|.
Compare to A033505 (tilings of 2 X n board with one extra space at the end) and A030186 (tilings of 2 X n board with no extra spaces at the end). (End)

Examples

			Some solutions for 5 X 3:
..0..1..4....1..2..0....4..0..4....4..3..4....4..0..4....1..4..0....3..4..2
..3..2..3....0..3..4....2..1..3....0..2..0....3..2..3....2..3..1....1..0..1
..4..1..0....1..2..1....4..0..4....4..3..4....0..1..0....0..4..0....2..4..3
..3..2..3....0..3..4....3..2..3....0..2..1....4..2..3....1..3..1....1..0..1
..4..0..4....1..2..1....4..1..0....4..3..0....0..1..0....0..4..0....2..3..2
...
...R..L.......R..L.......R..L.......L..R.......R..L.......L..R.......R..L...
...L..R.......L..R.......L..R.......R..L.......L..R.......R..L.......L..R...
...R..L.......R..L.......R..L.......L..R.......R..L.......L..R.......R..L...
...L..R.......L..R.......L..R.......R..L.......L..R.......R..L.......L..R...
		

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) + a(n-2) - a(n-3).
The top left element of A^(n+2) where A=(0,1,1;1,1,1;1,1,2). - David Neil McGrath, Sep 04 2014
a(n) ~ c*k^n where k = 1.629316... is the largest root of x^3 - 3x^2 - x + 1 and c = 1.6293... is conjecturally the largest root of 148x^3 - 296x^2 + 90x - 1. - Charles R Greathouse IV, Sep 15 2014
G.f.: x*(5+2*x-2*x^2) / (1-3*x-x^2+x^3). - Colin Barker, Mar 16 2016
a(n) = A030186(n) + A033505(n). - Greg Dresden, Mar 02 2025

A183713 1/20 of the number of (n+1) X 4 0..4 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease.

Original entry on oeis.org

12, 54, 224, 950, 4012, 16964, 71712, 303170, 1281664, 5418314, 22906232, 96837444, 409385940, 1730703022, 7316648160, 30931557950, 130764969444, 552816553732, 2337064300200, 9880075964922, 41768598769664, 176579193270290
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 3 of A183719.

Examples

			Some solutions for 3 X 4:
..0..4..1..4....0..4..0..4....4..0..4..0....3..0..3..4....3..2..3..2
..2..3..2..3....1..2..1..3....3..2..3..2....2..1..2..0....0..1..0..1
..0..4..1..0....0..3..0..4....0..1..4..0....3..4..3..4....3..2..4..2
...
...L..R..L.......L..R..L.......R..L..R.......R..L..R.......L..R..L...
...R..L..R.......R..L..R.......L..R..L.......L..R..L.......R..L..R...
		

Crossrefs

Cf. A183719.

Formula

Empirical: a(n) = 2*a(n-1) + 10*a(n-2) - 10*a(n-4) - 2*a(n-5) + a(n-6).
Empirical g.f.: 2*x*(6 + 15*x - 2*x^2 - 19*x^3 - 4*x^4 + 2*x^5) / ((1 - x)*(1 + x)*(1 - 2*x - 9*x^2 - 2*x^3 + x^4)). - Colin Barker, Apr 04 2018

A183714 1/20 of the number of (n+1) X 5 0..4 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease.

Original entry on oeis.org

29, 174, 950, 5362, 30113, 169560, 954496, 5374440, 30261345, 170394226, 959449106, 5402445266, 30419982145, 171288302164, 964487232600, 5430818438104, 30579761182213, 172188006484798, 969553341271046
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 4 of A183719.

Examples

			Some solutions for 3 X 5:
..2..1..2..0..1....4..3..0..3..4....3..4..3..4..2....0..3..4..3..4
..3..0..3..4..3....0..2..1..2..1....2..1..2..0..1....1..2..0..1..0
..2..1..2..0..2....4..3..4..3..4....4..0..3..4..2....0..3..4..2..3
...
...L..R..L..R.......L..R..L..R.......R..L..R..L.......L..R..L..R...
...R..L..R..L.......R..L..R..L.......L..R..L..R.......R..L..R..L...
		

Formula

Empirical: a(n) = 6*a(n-1) + 5*a(n-2) - 42*a(n-3) - 2*a(n-4) + 84*a(n-5) - 20*a(n-6) - 46*a(n-7) + 19*a(n-8) + 2*a(n-9) - a(n-10).

A183715 1/20 of the number of (n+1) X 6 0..4 arrays with every 2X2 subblock strictly increasing clockwise or counterclockwise with one decrease.

Original entry on oeis.org

70, 559, 4012, 30113, 224640, 1683197, 12606120, 94463507, 707826798, 5304230928, 39748015308, 297860692491, 2232084261366, 16726639262465, 125344918169856, 939301219166473, 7038871324696794, 52747415646208987, 395274995490521924
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 5 of A183719.

Examples

			Some solutions for 3 X 6:
..3..1..3..2..3..1....0..2..0..1..4..0....2..3..1..2..1..2....1..0..2..1..2..1
..4..0..4..1..4..0....4..3..4..2..3..1....0..4..0..3..0..4....3..4..3..4..3..4
..2..1..3..2..3..2....1..2..0..1..4..0....2..3..1..2..1..2....2..1..2..0..2..1
...
...L..R..L..R..L.......R..L..R..L..R.......R..L..R..L..R.......L..R..L..R..L...
...R..L..R..L..R.......L..R..L..R..L.......L..R..L..R..L.......R..L..R..L..R...
		

Formula

Empirical: a(n)=2*a(n-1)+54*a(n-2)-2*a(n-3)-738*a(n-4)-312*a(n-5)+4078*a(n-6)+2098*a(n-7)-10802*a(n-8)-4874*a(n-9)+14854*a(n-10)+4874*a(n-11)-10802*a(n-12)-2098*a(n-13)+4078*a(n-14)+312*a(n-15)-738*a(n-16)+2*a(n-17)+54*a(n-18)-2*a(n-19)-a(n-20).

A183717 1/20 of the number of (n+1) X 8 0..4 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease.

Original entry on oeis.org

408, 5776, 71712, 954496, 12606120, 168070828, 2239265280, 29887741084, 398877017736, 5325395568832, 71097798240000, 949288848361824, 12674717188992600, 169233802374938432, 2259618796412155200
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 7 of A183719.

Examples

			Some solutions for 3 X 8:
..0..4..0..4..0..4..0..4....1..0..2..0..1..0..1..0....3..0..3..0..4..0..4..0
..2..3..1..2..1..2..1..2....3..4..3..4..2..4..2..3....2..1..2..1..3..1..3..2
..0..4..0..4..0..3..0..3....2..0..1..0..1..0..1..0....3..4..3..0..4..0..4..1
...
...L..R..L..R..L..R..L.......L..R..L..R..L..R..L.......R..L..R..L..R..L..R...
...R..L..R..L..R..L..R.......R..L..R..L..R..L..R.......L..R..L..R..L..R..L...
		

A183718 1/20 of the number of (n+1) X 9 0..4 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease.

Original entry on oeis.org

985, 18566, 303170, 5374440, 94463507, 1680902120, 29887741084, 532844962952, 9498797049301, 169444214222538, 3022597001362206, 53927539247910656, 962146234750661827, 17166919088214504572, 306297928172424966016
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 8 of A183719.

Examples

			Some solutions for 3 X 9:
..0..2..0..1..0..2..0..2..1....0..3..0..4..0..3..4..3..0
..4..3..4..2..4..3..4..3..0....1..2..1..2..1..2..1..2..1
..1..2..0..1..0..2..0..2..1....0..3..4..3..0..3..0..3..4
...
...R..L..R..L..R..L..R..L.......L..R..L..R..L..R..L..R...
...L..R..L..R..L..R..L..R.......R..L..R..L..R..L..R..L...
		

A183711 1/20 of the number of (n+1) X (n+1) 0..4 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease.

Original entry on oeis.org

2, 17, 224, 5362, 224640, 16823812, 2239265280, 532844962952, 226169896329216, 171735135418632976, 232966965220983791616, 565591167958003196615968, 2455196078535760615522467840
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Diagonal of A183719.

Examples

			Some solutions for 3 X 3:
..0..1..0....3..2..3....2..3..1....4..3..0....4..0..4....4..0..3....0..1..0
..3..2..3....4..0..4....1..4..0....1..2..1....2..1..2....2..1..2....4..3..4
..4..1..0....3..2..3....2..3..1....0..3..0....3..0..3....3..4..3....1..2..1
...
...R..L.......L..R.......R..L.......L..R.......R..L.......R..L.......R..L...
...L..R.......R..L.......L..R.......R..L.......L..R.......L..R.......L..R...
		

A183716 1/20 of the number of (n+1) X 7 0..4 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease.

Original entry on oeis.org

169, 1797, 16964, 169560, 1683197, 16823812, 168070828, 1680902120, 16810325640, 168150768145, 1681983501886, 16825267289824, 168307255896111, 1683632068657357, 16841927176565292, 168475631338846804
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 6 of A183719.

Examples

			Some solutions for 3 X 7:
..4..0..4..0..4..0..4....1..0..1..4..1..4..1....2..4..2..4..2..4..2
..3..2..3..2..3..1..3....2..3..2..3..2..3..2....1..0..1..0..1..0..1
..0..1..4..1..4..0..4....1..4..1..4..0..4..0....2..4..2..4..2..4..2
...
...R..L..R..L..R..L.......L..R..L..R..L..R.......R..L..R..L..R..L...
...L..R..L..R..L..R.......R..L..R..L..R..L.......L..R..L..R..L..R...
		

Formula

Empirical: a(n)=12*a(n-1)+41*a(n-2)-731*a(n-3)-236*a(n-4)+17377*a(n-5)-11599*a(n-6)-210068*a(n-7)+239143*a(n-8)+1435333*a(n-9)-2045028*a(n-10)-5829087*a(n-11)+9632462*a(n-12)+14361840*a(n-13)-27309714*a(n-14)-21401634*a(n-15)+48701640*a(n-16)+18436650*a(n-17)-56085498*a(n-18)-7403128*a(n-19)+42308694*a(n-20)-1027934*a(n-21)-20976128*a(n-22)+2642614*a(n-23)+6772235*a(n-24)-1305140*a(n-25)-1387863*a(n-26)+326941*a(n-27)+171884*a(n-28)-44771*a(n-29)-11807*a(n-30)+3188*a(n-31)+387*a(n-32)-103*a(n-33)-4*a(n-34)+a(n-35).
Showing 1-8 of 8 results.