A183977 1/4 the number of (n+1) X (n+1) binary arrays with all 2 X 2 subblock sums the same.
4, 8, 14, 26, 46, 86, 158, 302, 574, 1118, 2174, 4286, 8446, 16766, 33278, 66302, 132094, 263678, 526334, 1051646, 2101246, 4200446, 8396798, 16789502, 33570814, 67133438, 134250494, 268484606, 536936446, 1073840126, 2147614718, 4295163902
Offset: 1
Examples
Some solutions for 5X5 ..1..0..1..0..1....0..1..0..1..0....1..1..1..1..1....0..1..1..0..1 ..1..0..1..0..1....1..0..1..0..1....0..1..0..1..0....1..0..0..1..0 ..0..1..0..1..0....1..0..1..0..1....1..1..1..1..1....0..1..1..0..1 ..1..0..1..0..1....1..0..1..0..1....1..0..1..0..1....1..0..0..1..0 ..0..1..0..1..0....1..0..1..0..1....1..1..1..1..1....0..1..1..0..1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-6,4).
Crossrefs
Diagonal of A183986.
Programs
-
PARI
Vec(2*(2 - 2*x - 5*x^2 + 4*x^3)/((1 - x)*(1 - 2*x)*(1 - 2*x^2)) + O(x^32)) \\ Andrew Howroyd, Mar 09 2024
Formula
From Andrew Howroyd, Mar 09 2024: (Start)
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
G.f.: 2*x*(2 - 2*x - 5*x^2 + 4*x^3)/((1 - x)*(1 - 2*x)*(1 - 2*x^2)). (End)
E.g.f.: 3*cosh(sqrt(2)*x) + cosh(2*x) - 2*cosh(x) - 2 - 2*sinh(x) + sinh(2*x) + 2*sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Oct 16 2024
Extensions
a(19) onwards from Andrew Howroyd, Mar 09 2024