cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183986 T(n,k) = 1/4 the number of (n+1) X (k+1) binary arrays with all 2 X 2 subblock sums the same.

Original entry on oeis.org

4, 6, 6, 9, 8, 9, 15, 11, 11, 15, 25, 17, 14, 17, 25, 45, 27, 20, 20, 27, 45, 81, 47, 30, 26, 30, 47, 81, 153, 83, 50, 36, 36, 50, 83, 153, 289, 155, 86, 56, 46, 56, 86, 155, 289, 561, 291, 158, 92, 66, 66, 92, 158, 291, 561, 1089, 563, 294, 164, 102, 86, 102, 164, 294, 563
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Table starts
...4...6...9..15..25..45..81.153.289..561.1089.2145.4225.8385.16641.33153.66049
...6...8..11..17..27..47..83.155.291..563.1091.2147.4227.8387.16643.33155.66051
...9..11..14..20..30..50..86.158.294..566.1094.2150.4230.8390.16646.33158.66054
..15..17..20..26..36..56..92.164.300..572.1100.2156.4236.8396.16652.33164.66060
..25..27..30..36..46..66.102.174.310..582.1110.2166.4246.8406.16662.33174.66070
..45..47..50..56..66..86.122.194.330..602.1130.2186.4266.8426.16682.33194.66090
..81..83..86..92.102.122.158.230.366..638.1166.2222.4302.8462.16718.33230.66126
.153.155.158.164.174.194.230.302.438..710.1238.2294.4374.8534.16790.33302.66198
.289.291.294.300.310.330.366.438.574..846.1374.2430.4510.8670.16926.33438.66334
.561.563.566.572.582.602.638.710.846.1118.1646.2702.4782.8942.17198.33710.66606

Examples

			Some solutions for 6 X 5
..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0
..1..0..1..1..0....1..0..1..0..1....0..0..1..1..0....0..0..1..0..1
..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0
..1..0..1..1..0....0..1..0..1..0....0..0..1..1..0....0..0..1..0..1
..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0
..1..0..1..1..0....0..1..0..1..0....0..0..1..1..0....0..0..1..0..1
		

Crossrefs

Main diagonal is A183977.

Programs

  • PARI
    T(n,k) = my(m=2, b=t->2^t-1); m^2 + (m-1)^2*(b(n-1) + b(k-1)) + (m-1)*(b((n-1)\2) + b(n\2) + b((k-1)\2) + b(k\2)) \\ Andrew Howroyd, Mar 09 2024

Formula

Empirical, for every row and column: a(n) = 3*a(n-1)-6*a(n-3)+4*a(n-4).
From Andrew Howroyd, Mar 09 2024: (Start)
The above empirical formula is correct.
T(n,k) = -2 + 2^(n-1) + 2^(k-1) + 2^(floor((n-1)/2)) + 2^(floor(n/2)) + 2^(floor((k-1)/2)) + 2^(floor(k/2)). (End)