cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A184039 T(n,k) = 1/16 the number of (n+1) X (k+1) 0..3 arrays with all 2 X 2 subblocks having the same four values.

Original entry on oeis.org

16, 28, 28, 49, 40, 49, 91, 61, 61, 91, 169, 103, 82, 103, 169, 325, 181, 124, 124, 181, 325, 625, 337, 202, 166, 202, 337, 625, 1225, 637, 358, 244, 244, 358, 637, 1225, 2401, 1237, 658, 400, 322, 400, 658, 1237, 2401, 4753, 2413, 1258, 700, 478, 478, 700, 1258
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Table starts
...16...28...49...91..169..325..625.1225.2401.4753..9409.18721.37249.74305
...28...40...61..103..181..337..637.1237.2413.4765..9421.18733.37261.74317
...49...61...82..124..202..358..658.1258.2434.4786..9442.18754.37282.74338
...91..103..124..166..244..400..700.1300.2476.4828..9484.18796.37324.74380
..169..181..202..244..322..478..778.1378.2554.4906..9562.18874.37402.74458
..325..337..358..400..478..634..934.1534.2710.5062..9718.19030.37558.74614
..625..637..658..700..778..934.1234.1834.3010.5362.10018.19330.37858.74914
.1225.1237.1258.1300.1378.1534.1834.2434.3610.5962.10618.19930.38458.75514
.2401.2413.2434.2476.2554.2710.3010.3610.4786.7138.11794.21106.39634.76690
.4753.4765.4786.4828.4906.5062.5362.5962.7138.9490.14146.23458.41986.79042

Examples

			Some solutions for 4X3
..0..3..0....3..2..3....3..2..3....1..0..1....2..3..2....3..2..2....3..1..3
..3..2..3....3..3..3....1..3..1....2..1..2....3..2..3....2..1..3....1..2..1
..3..0..3....3..2..3....3..2..3....0..1..0....2..3..2....3..2..2....3..1..3
..2..3..2....3..3..3....1..3..1....1..2..1....2..3..2....2..1..3....2..1..2
		

Crossrefs

Main diagonal is A184030.

Programs

  • PARI
    T(n,k) = my(m=4, b=t->2^t-1); m^2 + (m-1)^2*(b(n-1) + b(k-1)) + (m-1)*(b((n-1)\2) + b(n\2) + b((k-1)\2) + b(k\2)) \\ Andrew Howroyd, Mar 09 2024

Formula

Empirical, for all rows and columns: a(n)=3*a(n-1)-6*a(n-3)+4*a(n-4).
From Andrew Howroyd, Mar 09 2024: (Start)
The above empirical formula is correct.
T(n,k) = -14 + 9*(2^(n-1) + 2^(k-1)) + 3*(2^(floor((n-1)/2)) + 2^(floor(n/2)) + 2^(floor((k-1)/2)) + 2^(floor(k/2))). (End)

A184048 T(n,k) = 1/9 the number of (n+1) X (k+1) 0..2 arrays with all 2 X 2 subblocks having the same four values.

Original entry on oeis.org

9, 15, 15, 25, 21, 25, 45, 31, 31, 45, 81, 51, 41, 51, 81, 153, 87, 61, 61, 87, 153, 289, 159, 97, 81, 97, 159, 289, 561, 295, 169, 117, 117, 169, 295, 561, 1089, 567, 305, 189, 153, 189, 305, 567, 1089, 2145, 1095, 577, 325, 225, 225, 325, 577, 1095, 2145, 4225, 2151
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Table starts
....9...15...25...45...81..153..289..561.1089.2145.4225..8385.16641.33153.66049
...15...21...31...51...87..159..295..567.1095.2151.4231..8391.16647.33159.66055
...25...31...41...61...97..169..305..577.1105.2161.4241..8401.16657.33169.66065
...45...51...61...81..117..189..325..597.1125.2181.4261..8421.16677.33189.66085
...81...87...97..117..153..225..361..633.1161.2217.4297..8457.16713.33225.66121
..153..159..169..189..225..297..433..705.1233.2289.4369..8529.16785.33297.66193
..289..295..305..325..361..433..569..841.1369.2425.4505..8665.16921.33433.66329
..561..567..577..597..633..705..841.1113.1641.2697.4777..8937.17193.33705.66601
.1089.1095.1105.1125.1161.1233.1369.1641.2169.3225.5305..9465.17721.34233.67129
.2145.2151.2161.2181.2217.2289.2425.2697.3225.4281.6361.10521.18777.35289.68185

Examples

			Some solutions for 6X5
..0..1..0..1..0....1..2..1..2..1....1..2..1..2..1....2..1..2..2..2
..0..1..0..1..0....1..2..1..2..1....1..0..1..0..1....0..2..0..1..0
..1..0..1..0..1....2..1..2..1..2....1..2..1..2..1....2..1..2..2..2
..0..1..0..1..0....1..2..1..2..1....1..0..1..0..1....0..2..0..1..0
..0..1..0..1..0....1..2..1..2..1....2..1..2..1..2....2..1..2..2..2
..1..0..1..0..1....2..1..2..1..2....0..1..0..1..0....0..2..0..1..0
		

Crossrefs

Main diagonal is A184040.

Programs

  • PARI
    T(n,k) = my(m=3, b=t->2^t-1); m^2 + (m-1)^2*(b(n-1) + b(k-1)) + (m-1)*(b((n-1)\2) + b(n\2) + b((k-1)\2) + b(k\2)) \\ Andrew Howroyd, Mar 09 2024

Formula

Empirical, for all rows and columns: a(n)=3*a(n-1)-6*a(n-3)+4*a(n-4).
From Andrew Howroyd, Mar 09 2024: (Start)
The above empirical formula is correct.
T(n,k) = -7 + 4*(2^(n-1) + 2^(k-1)) + 2*(2^(floor((n-1)/2)) + 2^(floor(n/2)) + 2^(floor((k-1)/2)) + 2^(floor(k/2))). (End)

A183978 1/4 the number of (n+1) X 2 binary arrays with all 2 X 2 subblock sums the same.

Original entry on oeis.org

4, 6, 9, 15, 25, 45, 81, 153, 289, 561, 1089, 2145, 4225, 8385, 16641, 33153, 66049, 131841, 263169, 525825, 1050625, 2100225, 4198401, 8394753, 16785409, 33566721, 67125249, 134242305, 268468225, 536920065, 1073807361, 2147581953, 4295098369
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Column 1 of A183986
Based on the conjectured recursion formula, it is also the number of notches in a sheet of paper when you fold it n times and cut off the four corners (see A274230). - Philippe Gibone, Jul 06 2016

Examples

			Some solutions for 5X2
..0..1....1..0....1..0....1..1....0..1....1..0....1..0....0..1....0..1....0..1
..0..0....1..0....1..0....1..0....1..0....1..0....1..0....0..1....1..0....0..1
..1..0....1..0....0..1....1..1....0..1....0..1....0..1....1..0....0..1....1..0
..0..0....1..0....1..0....0..1....1..0....1..0....0..1....1..0....0..1....0..1
..1..0....1..0....1..0....1..1....1..0....0..1....0..1....1..0....1..0....0..1
		

Crossrefs

Cf. A274230.
Conjectured to be the main diagonal of A274636.

Programs

  • Maple
    seq((1+2^floor((n-1)/2))*(1+2^ceil((n-1)/2)), n=1..20); # Robert Israel, May 21 2019

Formula

Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4)
Based on the conjectured recursion formula, we may prove (by a tedious induction) that a(n) = (2^ceiling(n/2) + 1) * (2^floor(n/2) + 1) = A051032(n) * A051032(n-1) for n >= 1. - Philippe Gibone, Jul 06 2016, corrected by Robert Israel, May 21 2019
Empirical: G.f.: -x*(4-6*x-9*x^2+12*x^3) / ( (x-1)*(2*x-1)*(2*x^2-1) ). - R. J. Mathar, Jul 15 2016
Empirical formulas verified (see link): Robert Israel, May 21 2019.
2*a(n) = 2+2^n+A029744(n+3). - R. J. Mathar, Jul 19 2024

A183977 1/4 the number of (n+1) X (n+1) binary arrays with all 2 X 2 subblock sums the same.

Original entry on oeis.org

4, 8, 14, 26, 46, 86, 158, 302, 574, 1118, 2174, 4286, 8446, 16766, 33278, 66302, 132094, 263678, 526334, 1051646, 2101246, 4200446, 8396798, 16789502, 33570814, 67133438, 134250494, 268484606, 536936446, 1073840126, 2147614718, 4295163902
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Examples

			Some solutions for 5X5
..1..0..1..0..1....0..1..0..1..0....1..1..1..1..1....0..1..1..0..1
..1..0..1..0..1....1..0..1..0..1....0..1..0..1..0....1..0..0..1..0
..0..1..0..1..0....1..0..1..0..1....1..1..1..1..1....0..1..1..0..1
..1..0..1..0..1....1..0..1..0..1....1..0..1..0..1....1..0..0..1..0
..0..1..0..1..0....1..0..1..0..1....1..1..1..1..1....0..1..1..0..1
		

Crossrefs

Diagonal of A183986.

Programs

  • PARI
    Vec(2*(2 - 2*x - 5*x^2 + 4*x^3)/((1 - x)*(1 - 2*x)*(1 - 2*x^2)) + O(x^32)) \\ Andrew Howroyd, Mar 09 2024

Formula

From Andrew Howroyd, Mar 09 2024: (Start)
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
G.f.: 2*x*(2 - 2*x - 5*x^2 + 4*x^3)/((1 - x)*(1 - 2*x)*(1 - 2*x^2)). (End)
E.g.f.: 3*cosh(sqrt(2)*x) + cosh(2*x) - 2*cosh(x) - 2 - 2*sinh(x) + sinh(2*x) + 2*sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Oct 16 2024

Extensions

a(19) onwards from Andrew Howroyd, Mar 09 2024

A183979 1/4 the number of (n+1) X 3 binary arrays with all 2 X 2 subblock sums the same.

Original entry on oeis.org

6, 8, 11, 17, 27, 47, 83, 155, 291, 563, 1091, 2147, 4227, 8387, 16643, 33155, 66051, 131843, 263171, 525827, 1050627, 2100227, 4198403, 8394755, 16785411, 33566723, 67125251, 134242307, 268468227, 536920067, 1073807363, 2147581955, 4295098371
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Column 2 of A183986.

Examples

			Some solutions for 5 X 3.
..1..0..1....1..0..1....1..0..1....1..0..1....0..1..0....1..0..1....1..0..1
..0..1..0....1..1..1....0..1..0....0..0..0....0..1..0....1..0..1....1..0..1
..0..1..0....0..1..0....0..1..0....1..0..1....1..0..1....0..1..0....0..1..0
..0..1..0....1..1..1....1..0..1....0..0..0....1..0..1....0..1..0....1..0..1
..0..1..0....0..1..0....0..1..0....1..0..1....1..0..1....0..1..0....0..1..0
		

Crossrefs

Cf. A183986.

Formula

Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
Conjectures from Colin Barker, Apr 07 2018: (Start)
G.f.: x*(6 - 10*x - 13*x^2 + 20*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = (3*2^(n/2) + 2^n + 6) / 2 for n even.
a(n) = 2^(n-1) + 2^((n+1)/2) + 3 for n odd.
(End)
The above empirical formula is correct. See note from Andrew Howroyd in A183986.

A183980 1/4 the number of (n+1) X 4 binary arrays with all 2 X 2 subblock sums the same.

Original entry on oeis.org

9, 11, 14, 20, 30, 50, 86, 158, 294, 566, 1094, 2150, 4230, 8390, 16646, 33158, 66054, 131846, 263174, 525830, 1050630, 2100230, 4198406, 8394758, 16785414, 33566726, 67125254, 134242310, 268468230, 536920070, 1073807366, 2147581958, 4295098374
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Column 3 of A183986.

Examples

			Some solutions for 5 X 4.
..0..1..0..1....1..1..1..1....0..0..1..1....1..0..1..0....1..1..1..0
..1..1..1..1....0..0..0..0....1..1..0..0....1..1..1..1....0..0..0..1
..1..0..1..0....1..1..1..1....0..0..1..1....1..0..1..0....1..1..1..0
..1..1..1..1....0..0..0..0....1..1..0..0....1..1..1..1....0..0..0..1
..0..1..0..1....1..1..1..1....0..0..1..1....0..1..0..1....1..1..1..0
		

Crossrefs

Cf. A183986.

Formula

Empirical: a(n)=3*a(n-1)-6*a(n-3)+4*a(n-4).
Conjectures from Colin Barker, Apr 07 2018: (Start)
G.f.: x*(9 - 16*x - 19*x^2 + 32*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = (3*2^(n/2) + 2^n + 12) / 2 for n even.
a(n) = 2^((n-5)/2+3) + 2^(n-1) + 6 for n odd.
(End)
The above empirical formula is correct. See note from Andrew Howroyd in A183986.

A183981 1/4 the number of (n+1) X 5 binary arrays with all 2 X 2 subblock sums the same.

Original entry on oeis.org

15, 17, 20, 26, 36, 56, 92, 164, 300, 572, 1100, 2156, 4236, 8396, 16652, 33164, 66060, 131852, 263180, 525836, 1050636, 2100236, 4198412, 8394764, 16785420, 33566732, 67125260, 134242316, 268468236, 536920076, 1073807372, 2147581964, 4295098380
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Column 4 of A183986.

Examples

			Some solutions for 7 X 5:
..0..1..0..1..0....0..0..0..0..1....0..1..0..1..0....0..1..0..1..0
..1..1..1..1..1....1..0..1..0..0....0..1..0..1..0....0..0..0..0..0
..0..1..0..1..0....0..0..0..0..1....1..0..1..0..1....1..0..1..0..1
..1..1..1..1..1....1..0..1..0..0....1..0..1..0..1....0..0..0..0..0
..1..0..1..0..1....0..0..0..0..1....0..1..0..1..0....1..0..1..0..1
..1..1..1..1..1....1..0..1..0..0....0..1..0..1..0....0..0..0..0..0
..1..0..1..0..1....0..0..0..0..1....1..0..1..0..1....1..0..1..0..1
		

Crossrefs

Cf. A183986.

Formula

Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
Conjectures from Colin Barker, Apr 08 2018: (Start)
G.f.: x*(15 - 28*x - 31*x^2 + 56*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2-1) + 2^(n-1) + 12 for n even.
a(n) = 2^(n-1) + 2^((n+1)/2) + 12 for n odd.
(End)
The above empirical formula is correct. See note from Andrew Howroyd in A183986.

A183982 1/4 the number of (n+1) X 6 binary arrays with all 2 X 2 subblock sums the same.

Original entry on oeis.org

25, 27, 30, 36, 46, 66, 102, 174, 310, 582, 1110, 2166, 4246, 8406, 16662, 33174, 66070, 131862, 263190, 525846, 1050646, 2100246, 4198422, 8394774, 16785430, 33566742, 67125270, 134242326, 268468246, 536920086, 1073807382, 2147581974, 4295098390
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Column 5 of A183986.

Examples

			Some solutions for 5 X 6:
..0..1..1..0..1..0....0..1..1..1..0..1....0..1..0..0..1..0....0..1..0..1..1..1
..1..0..0..1..0..1....1..1..0..1..1..1....1..0..1..1..0..1....1..0..1..0..0..0
..0..1..1..0..1..0....0..1..1..1..0..1....0..1..0..0..1..0....0..1..0..1..1..1
..1..0..0..1..0..1....1..1..0..1..1..1....1..0..1..1..0..1....1..0..1..0..0..0
..0..1..1..0..1..0....0..1..1..1..0..1....0..1..0..0..1..0....0..1..0..1..1..1
		

Crossrefs

Cf. A183986.

Formula

Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
Conjectures from Colin Barker, Apr 08 2018: (Start)
G.f.: x*(25 - 48*x - 51*x^2 + 96*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2-1) + 2^(n-1) + 22 for n even.
a(n) = 2^(n-1) + 2^((n+1)/2) + 22 for n odd.
(End)
The above empirical formula is correct. See note from Andrew Howroyd in A183986.

A183983 1/4 the number of (n+1) X 7 binary arrays with all 2 X 2 subblock sums the same.

Original entry on oeis.org

45, 47, 50, 56, 66, 86, 122, 194, 330, 602, 1130, 2186, 4266, 8426, 16682, 33194, 66090, 131882, 263210, 525866, 1050666, 2100266, 4198442, 8394794, 16785450, 33566762, 67125290, 134242346, 268468266, 536920106, 1073807402, 2147581994, 4295098410
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Column 6 of A183986.

Examples

			Some solutions for 5 X 7.
..0..0..1..0..1..0..1....1..0..1..0..1..0..1....0..1..0..1..0..1..0
..1..1..0..1..0..1..0....0..0..0..0..0..0..0....0..1..0..1..0..1..0
..0..0..1..0..1..0..1....1..0..1..0..1..0..1....0..1..0..1..0..1..0
..1..1..0..1..0..1..0....0..0..0..0..0..0..0....0..1..0..1..0..1..0
..0..0..1..0..1..0..1....1..0..1..0..1..0..1....0..1..0..1..0..1..0
		

Crossrefs

Cf. A183986.

Formula

Conjectures from Colin Barker, Apr 09 2018: (Start)
G.f.: x*(45 - 88*x - 91*x^2 + 176*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2-1) + 2^(n-1) + 42 for n even.
a(n) = 2^(n-1) + 2^((n+1)/2) + 42 for n odd.
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4) for n>4.
(End)
The above empirical formula is correct. See note from Andrew Howroyd in A183986.

A183984 1/4 the number of (n+1) X 8 binary arrays with all 2 X 2 subblock sums the same.

Original entry on oeis.org

81, 83, 86, 92, 102, 122, 158, 230, 366, 638, 1166, 2222, 4302, 8462, 16718, 33230, 66126, 131918, 263246, 525902, 1050702, 2100302, 4198478, 8394830, 16785486, 33566798, 67125326, 134242382, 268468302, 536920142, 1073807438, 2147582030
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Column 7 of A183986.

Examples

			Some solutions for 5 X 8.
..0..0..1..1..1..1..0..1....1..1..0..1..1..0..1..1....1..0..1..0..1..0..1..0
..1..1..0..0..0..0..1..0....0..0..1..0..0..1..0..0....1..1..1..1..1..1..1..1
..0..0..1..1..1..1..0..1....1..1..0..1..1..0..1..1....0..1..0..1..0..1..0..1
..1..1..0..0..0..0..1..0....0..0..1..0..0..1..0..0....1..1..1..1..1..1..1..1
..0..0..1..1..1..1..0..1....1..1..0..1..1..0..1..1....1..0..1..0..1..0..1..0
		

Crossrefs

Cf. A183986.

Formula

Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
Conjectures from Colin Barker, Apr 09 2018: (Start)
G.f.: x*(81 - 160*x - 163*x^2 + 320*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2-1) + 2^(n-1) + 78 for n even.
a(n) = 2^(n-1) + 2^((n+1)/2) + 78 for n odd.
(End)
The above empirical formula is correct. See note from Andrew Howroyd in A183986.
Showing 1-10 of 11 results. Next