A183986 T(n,k) = 1/4 the number of (n+1) X (k+1) binary arrays with all 2 X 2 subblock sums the same.
4, 6, 6, 9, 8, 9, 15, 11, 11, 15, 25, 17, 14, 17, 25, 45, 27, 20, 20, 27, 45, 81, 47, 30, 26, 30, 47, 81, 153, 83, 50, 36, 36, 50, 83, 153, 289, 155, 86, 56, 46, 56, 86, 155, 289, 561, 291, 158, 92, 66, 66, 92, 158, 291, 561, 1089, 563, 294, 164, 102, 86, 102, 164, 294, 563
Offset: 1
Examples
Some solutions for 6 X 5 ..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0 ..1..0..1..1..0....1..0..1..0..1....0..0..1..1..0....0..0..1..0..1 ..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0 ..1..0..1..1..0....0..1..0..1..0....0..0..1..1..0....0..0..1..0..1 ..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0 ..1..0..1..1..0....0..1..0..1..0....0..0..1..1..0....0..0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..683
Crossrefs
Programs
-
PARI
T(n,k) = my(m=2, b=t->2^t-1); m^2 + (m-1)^2*(b(n-1) + b(k-1)) + (m-1)*(b((n-1)\2) + b(n\2) + b((k-1)\2) + b(k\2)) \\ Andrew Howroyd, Mar 09 2024
Formula
Empirical, for every row and column: a(n) = 3*a(n-1)-6*a(n-3)+4*a(n-4).
From Andrew Howroyd, Mar 09 2024: (Start)
The above empirical formula is correct.
T(n,k) = -2 + 2^(n-1) + 2^(k-1) + 2^(floor((n-1)/2)) + 2^(floor(n/2)) + 2^(floor((k-1)/2)) + 2^(floor(k/2)). (End)
Comments