cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A184039 T(n,k) = 1/16 the number of (n+1) X (k+1) 0..3 arrays with all 2 X 2 subblocks having the same four values.

Original entry on oeis.org

16, 28, 28, 49, 40, 49, 91, 61, 61, 91, 169, 103, 82, 103, 169, 325, 181, 124, 124, 181, 325, 625, 337, 202, 166, 202, 337, 625, 1225, 637, 358, 244, 244, 358, 637, 1225, 2401, 1237, 658, 400, 322, 400, 658, 1237, 2401, 4753, 2413, 1258, 700, 478, 478, 700, 1258
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Table starts
...16...28...49...91..169..325..625.1225.2401.4753..9409.18721.37249.74305
...28...40...61..103..181..337..637.1237.2413.4765..9421.18733.37261.74317
...49...61...82..124..202..358..658.1258.2434.4786..9442.18754.37282.74338
...91..103..124..166..244..400..700.1300.2476.4828..9484.18796.37324.74380
..169..181..202..244..322..478..778.1378.2554.4906..9562.18874.37402.74458
..325..337..358..400..478..634..934.1534.2710.5062..9718.19030.37558.74614
..625..637..658..700..778..934.1234.1834.3010.5362.10018.19330.37858.74914
.1225.1237.1258.1300.1378.1534.1834.2434.3610.5962.10618.19930.38458.75514
.2401.2413.2434.2476.2554.2710.3010.3610.4786.7138.11794.21106.39634.76690
.4753.4765.4786.4828.4906.5062.5362.5962.7138.9490.14146.23458.41986.79042

Examples

			Some solutions for 4X3
..0..3..0....3..2..3....3..2..3....1..0..1....2..3..2....3..2..2....3..1..3
..3..2..3....3..3..3....1..3..1....2..1..2....3..2..3....2..1..3....1..2..1
..3..0..3....3..2..3....3..2..3....0..1..0....2..3..2....3..2..2....3..1..3
..2..3..2....3..3..3....1..3..1....1..2..1....2..3..2....2..1..3....2..1..2
		

Crossrefs

Main diagonal is A184030.

Programs

  • PARI
    T(n,k) = my(m=4, b=t->2^t-1); m^2 + (m-1)^2*(b(n-1) + b(k-1)) + (m-1)*(b((n-1)\2) + b(n\2) + b((k-1)\2) + b(k\2)) \\ Andrew Howroyd, Mar 09 2024

Formula

Empirical, for all rows and columns: a(n)=3*a(n-1)-6*a(n-3)+4*a(n-4).
From Andrew Howroyd, Mar 09 2024: (Start)
The above empirical formula is correct.
T(n,k) = -14 + 9*(2^(n-1) + 2^(k-1)) + 3*(2^(floor((n-1)/2)) + 2^(floor(n/2)) + 2^(floor((k-1)/2)) + 2^(floor(k/2))). (End)
Showing 1-1 of 1 results.