A184103 a(n) = n-1+ceiling(n^2/16); complement of A184102.
1, 2, 3, 4, 6, 8, 10, 11, 14, 16, 18, 20, 23, 26, 29, 31, 35, 38, 41, 44, 48, 52, 56, 59, 64, 68, 72, 76, 81, 86, 91, 95, 101, 106, 111, 116, 122, 128, 134, 139, 146, 152, 158, 164, 171, 178, 185, 191, 199, 206, 213, 220, 228, 236, 244, 251, 260, 268, 276, 284, 293, 302, 311, 319, 329, 338, 347, 356, 366, 376, 386, 395, 406, 416, 426, 436, 447, 458, 469, 479
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
Crossrefs
Cf. A184102.
Programs
-
Mathematica
a=16; b=0; Table[n+Floor[(a*n+b)^(1/2)],{n,100}] (* A184102 *) Table[n-1+Ceiling[(n^2-b)/a],{n,80}] (* A184103 *) LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1},{1,2,3,4,6,8,10,11,14,16},80] (* Harvey P. Dale, Jul 05 2019 *)
-
PARI
a(n) = n-1+ceil(n^2/16); \\ Michel Marcus, Jul 13 2022
Formula
a(n) = n-1+ceiling(n^2/16).
a(n) = +2*a(n-1) -a(n-2) +a(n-8) -2*a(n-9) +a(n-10). - R. J. Mathar, Mar 11 2012
Extensions
Name and formula corrected by Michel Marcus, Jul 13 2022