cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A212623 Irregular triangle read by rows: T(n,k) is the number of independent vertex subsets with k vertices of the rooted tree with Matula-Goebel number n (n>=1, k>=0).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1, 4, 3, 1, 4, 3, 1, 4, 3, 1, 1, 4, 3, 1, 1, 5, 6, 1, 1, 5, 6, 1, 1, 5, 6, 1, 1, 5, 6, 2, 1, 5, 6, 2, 1, 5, 6, 2, 1, 6, 10, 4, 1, 5, 6, 4, 1, 1, 5, 6, 2, 1, 6, 10, 5, 1, 5, 6, 4, 1, 1, 6, 10, 5, 1, 1, 6, 10, 5, 1, 1, 6, 10, 4, 1, 6, 10, 5, 1, 6, 10, 7, 2, 1, 7, 15
Offset: 1

Views

Author

Emeric Deutsch, Jun 01 2012

Keywords

Comments

A vertex subset in a tree is said to be independent if no pair of vertices is connected by an edge. The empty set is considered to be independent.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
Sum of entries in row n = A184165(n) = number of independent vertex subset (the Merrifield-Simmons index).
Sum(k*T(n,k), k>=0) = A212624(n) = number of vertices in all independent vertex subsets.
Number of entries in row n = 1 + number of vertices in the largest independent vertex subset = 1 + A212625(n).
Last entry in row n = A212626(n) = number of largest independent vertex subsets.
With the given Maple program, the command P(n) yields the generating polynomial of row n.

Examples

			Row 5 is [1,4,3] because the rooted tree with Matula-Goebel number 5 is the path tree R - A - B - C with independent vertex subsets: {}, {R}, {A}, {B}, {C}, {R,B}, {R,C}, {A,C}.
Triangle starts:
  1, 1;
  1, 2;
  1, 3, 1;
  1, 3, 1;
  1, 4, 3;
  ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [x, 1] elif bigomega(n) = 1 then [expand(x*A(pi(n))[2]), expand(A(pi(n))[1])+A(pi(n))[2]] else [sort(expand(A(r(n))[1]*A(s(n))[1]/x)), sort(expand(A(r(n))[2]*A(s(n))[2]))] end if end proc: P := proc (n) options operator, arrow: sort(A(n)[1]+A(n)[2]) end proc: for n to 35 do seq(coeff(P(n), x, k), k = 0 .. degree(P(n))) end do; % yields sequence in triangular form
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    A [n_] := Which[n == 1, {x, 1}, PrimeOmega[n] == 1, {x*A[PrimePi[n]][[2]], A[PrimePi[n]][[1]] + A[PrimePi[n]][[2]]}, True, {A[r[n]][[1]]*A[s[n]][[1]]/x, A[r[n]][[2]]*A[s[n]][[2]]}];
    P[n_] := A[n] // Total;
    T[n_] := CoefficientList[P[n], x];
    Table[T[n], {n, 1, 35}] // Flatten (* Jean-François Alcover, Jun 20 2024, after Maple code *)

Formula

Define R(n) =R(n,x) (S(n)=S(n,x)) the generating polynomial of the independent vertex subsets that contain (do not contain) the root of the rooted tree with Matula-Goebel number n. Then R(1)=x, S(1)=1, R(the t-th prime) = x*S(t), S(the t-th prime) = R(t) + S(t); R(rs) = R(r)R(s)/x, S(rs) = S(r)S(s), (r,s>=2).

A193404 Number of matchings (independent edge subsets) in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 4, 4, 8, 8, 8, 7, 7, 7, 13, 5, 7, 12, 5, 11, 11, 13, 12, 9, 21, 12, 20, 10, 11, 19, 13, 6, 21, 11, 18, 16, 9, 9, 19, 14, 12, 17, 10, 18, 32, 20, 19, 11, 15, 30, 18, 17, 6, 28, 34, 13, 14, 19, 11, 25, 16, 21, 28, 7, 31, 31, 9, 15, 32, 27, 14
Offset: 1

Views

Author

Emeric Deutsch, Feb 11 2012

Keywords

Comments

A matching in a graph is a set of edges, no two of which have a vertex in common. The empty set is considered to be a matching.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

Examples

			a(3)=3 because the rooted tree with Matula-Goebel number 3 is the path ABC on 3 vertices; it has 3 matchings: empty, {AB}, {BC}.
		

Crossrefs

Cf. A202853 (by size), A347966 (maximal), A347967 (maximum).
Cf. A184165 (independent vertex sets).

Programs

  • Maple
    with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [A(pi(n))[2], A(pi(n))[1]+A(pi(n))[2]] else [A(r(n))[1]*A(s(n))[2]+A(s(n))[1]*A(r(n))[2], A(r(n))[2]*A(s(n))[2]] end if end proc: a := proc (n) options operator, arrow: A(n)[1]+A(n)[2] end proc: seq(a(n), n = 1 .. 80);
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    A[n_] := Which[n == 1, {0, 1}, PrimeOmega[n] == 1, {A[PrimePi[n]][[2]], A[PrimePi[n]][[1]] + A[PrimePi[n]][[2]]}, True, {A[r[n]][[1]]* A[s[n]][[2]] + A[s[n]][[1]]*A[r[n]][[2]], A[r[n]][[2]]*A[s[n]][[2]]}];
    a[n_] := Total[A[n]];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 25 2024, after Maple code *)

Formula

Define b(n) (c(n)) to be the number of matchings of the rooted tree with Matula-Goebel number n that contain (do not contain) the root. We have the following recurrence for the pair A(n)=[b(n),c(n)]. A(1)=[0,1]; if n=prime(t), then A(n)=[c(t),b(t)+c(t)]; if n=r*s (r,s,>=2), then A(n)=[b(r)*c(s)+c(r)*b(s), c(r)c(s)]. Clearly, a(n)=b(n)+c(n). See the Czabarka et al. reference (p. 3315, (2)). The Maple program is based on this recursive formula.

A228731 Number of independent subsets in the rooted tree with Matula-Goebel number n that contain the root.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 4, 3, 5, 2, 6, 4, 6, 1, 5, 4, 8, 3, 8, 5, 9, 2, 9, 6, 8, 4, 10, 6, 8, 1, 10, 5, 12, 4, 12, 8, 12, 3, 8, 8, 10, 5, 12, 9, 15, 2, 16, 9, 10, 6, 16, 8, 15, 4, 16, 10, 9, 6, 18, 8, 16, 1, 18, 10, 9, 5, 18, 12, 20, 4, 15, 12, 18, 8, 20, 12
Offset: 1

Views

Author

Keywords

Comments

A184165(n) = a(n) + A228732(n);
this sequence and A228732 are defined by a pair of mutually recursive functions, see A184165 for definition (called b and c there).

Crossrefs

Programs

  • Haskell
    see A184165.
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    A[n_] := A[n] = If[n==1, {1, 1}, If[PrimeOmega[n]==1, {A[PrimePi[n]][[2]], A[PrimePi[n]] // Total}, A[r[n]] * A[s[n]]]];
    a[n_] := A[n][[1]];
    a /@ Range[1, 80] (* Jean-François Alcover, Sep 20 2019 *)

Formula

Completely multiplicative with a(prime(t)) = A228732(t). - Andrew Howroyd, Aug 01 2018

A228732 Number of independent subsets in the rooted tree with Matula-Goebel number n that do not contain the root.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 8, 9, 10, 8, 12, 8, 10, 15, 16, 9, 18, 9, 20, 15, 16, 13, 24, 25, 16, 27, 20, 13, 30, 13, 32, 24, 18, 25, 36, 14, 18, 24, 40, 14, 30, 14, 32, 45, 26, 21, 48, 25, 50, 27, 32, 17, 54, 40, 40, 27, 26, 14, 60, 22, 26, 45, 64, 40, 48, 17, 36
Offset: 1

Views

Author

Keywords

Comments

A184165(n) = A228731(n) + a(n);
this sequence and A228731 are defined by a pair of mutually recursive functions, see A184165 for definition (called b and c there).

Crossrefs

Programs

  • Haskell
    see A184165.
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    A[n_] := A[n] = If[n==1, {1, 1}, If[PrimeOmega[n]==1, {A[PrimePi[n]][[2]], A[PrimePi[n]] // Total}, A[r[n]] * A[s[n]]]];
    a[n_] := A[n][[2]];
    a /@ Range[1, 80] (* Jean-François Alcover, Sep 20 2019 *)

Formula

Completely multiplicative with a(prime(t)) = A228731(t) + A228732(t). - Andrew Howroyd, Aug 01 2018
Showing 1-4 of 4 results.